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Abstract

Graphs are a commonly used model in data mining to represent complex relationships, with nodes
representing entities and edges representing relationships. However, graphs have limitations in modeling
high-order relationships. In contrast, hypergraphs offer a more versatile representation, allowing edges to join
any number of nodes. This capability empowers hypergraphs to model multiple relationships and capture
high-order information present in real-world applications. We focus on the problem of local clustering in
hypergraphs, which computes a cluster near a given seed node. Although extensively explored in the context
of graphs, this problem has received less attention for hypergraphs. Current methods often directly extend
graph-based local clustering to hypergraphs, overlooking their inherent high-order features and resulting in
low-quality local clusters. To address this, we propose an effective hypergraph local clustering model. This
model introduces a novel conductance measurement that leverages the high-order properties of hypergraphs
to assess cluster quality. Based on this new definition of hypergraph conductance, we propose a greedy
algorithm to find local clusters in real time. Experimental evaluations and case studies on real-world datasets
demonstrate the effectiveness of the proposed methods.
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1. Introduction

A graph is a commonly used data structure in
data mining that organizes real-world entities and
their relationships through nodes and edges. Graphs
naturally facilitate the representation of complex
relationships, making them particularly advantageous
for managing highly interrelated data. However, an
edge in a graph can only connect two nodes, which
limits its application in representing higher-order
relationships in the real world. Hypergraphs, on the
other hand, are a generalization of graphs in which each
hyperedge can connect an arbitrary number of nodes.
This provides a more comprehensive abstraction for
representing n-ary interactions, enabling the capture
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of more complex high-order information compared to
traditional graphs [5, 9, 19, 21–24, 34, 37].

Graph theory offers profound applications across
a variety of real-world scenarios, leveraging unique
properties of graphs and hypergraphs. For instance,
in collaboration networks, academic publications with
multiple co-authors can be represented as hyperedges,
linking all authors who contributed to the work. This
captures the collective nature of scholarly collabora-
tions. In biological networks, protein complexes, which
comprise multiple interacting proteins, are aptly mod-
eled as hyperedges to reflect their intricate interactions.
Similarly, in e-commerce, the bundling of products in
shopping carts can be effectively analyzed using hyper-
graph modeling, where each set of purchased products
forms a hyperedge, providing insights into consumer
purchasing patterns.

Additionally, graph theory underpins significant
advancements in intelligent communication systems as
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evidenced by recent research [25]. Social media plat-
forms employ graph-based analyses to monitor user-
generated content, aiming to preemptively identify and
mitigate risks such as potential user suicides [27].
Furthermore, graph theoretical approaches have found
applications in health domains, such as analyzing pat-
terns in eye care [26]. These applications demonstrate
the versatile utility of graph-based models in analyzing
complex, interconnected data across diverse domains.

Local clustering is a fundamental topic in graph
analysis. Specifically, it identifies a cluster of a seed
node within the graph where the nodes are more
densely connected to each other than to the rest of
the graph. This concept is crucial for understanding
the underlying structure and organization of complex
networks. While the problem has been extensively
explored for graphs [18, 33, 36], the study of local
clustering in hypergraphs remains rather limited.
In this paper, we investigate the problem of local
clustering in hypergraphs.

Applications. Hypergraph local clustering is a pivotal
technique in various fields, capitalizing on its ability
to encapsulate complex, high-order relationships that
surpass traditional graph models. This method finds
extensive utility in domains such as web ranking and
community detection [7, 8]. In the sphere of academic
research, it is instrumental in discerning collaborative
clusters within co-authorship networks, thereby reveal-
ing concealed scientific communities. Within the realm
of social network analysis, hypergraph local cluster-
ing elucidates groups connected by common activities,
providing insights into the underlying social dynam-
ics [10]. In the commercial sector, particularly in e-
commerce, this approach is employed to scrutinize
patterns of product co-purchases, thereby refining mar-
keting strategies and enhancing recommendation sys-
tems. Moreover, the method holds significant relevance
in bioinformatics [11], where it facilitates the identi-
fication of protein complexes within protein-protein
interaction networks. Notably, in the health and med-
ical domains, hypergraph local clustering serves critical
functions, as exemplified by its application in identify-
ing disease modules and predicting protein functions
[31]. These applications underscore the versatility and
efficacy of local clustering in hypergraphs, particularly
in capturing and analyzing multifaceted relational data.
Practically, we highlight the following two example
applications in the health/medical domain.

1. Disease Gene/Drug Discovery. Hypergraph local clus-
tering enhances the identification of disease-associated
genes and drugs by modeling relationships among
genes, diseases, traits, and drug-target interactions. It
uncovers that clusters provide insights into disease
genetics and drug efficacy, identifying novel candidates
for research and therapeutic development [29].

2. Healthcare Analytics. Hypergraph local clustering
analyzes patient data across demographics, medical
histories, and treatment outcomes. By identifying
clusters of patients with similar profiles, it advances
precision medicine by optimizing treatment strategies
and discovering new patient subgroups for tailored
interventions.

Motivations and Challenges. Traditional approaches
to hypergraph local clustering often fall short due
to their inability to effectively capture the high-order
information in hypergraphs. Traditional approaches to
hypergraph local clustering often struggle to effectively
capture the complex, higher-order relationships present
in hypergraphs. In local clustering, conductance is a
key metric that assesses cluster quality by measuring
the connectivity between a node subset and the rest
of the graph. High conductance indicates a cluster has
dense internal connections compared to external ones,
which is crucial for identifying high-quality clusters.
Commonly, hypergraphs are converted into clique
graphs, where each hyperedge becomes a complete
subgraph of pairwise edges, to apply graph-based
clustering algorithms. This method, however, loses
vital higher-order interaction data, reducing complex
relationships to simple pairwise connections. As a
result, conductance in these transformed graphs may
not accurately reflect the true quality of the clusters in
the original hypergraph.

Another method adapts graph-based clustering tech-
niques directly to hypergraphs by applying conduc-
tance as is. Yet, this approach falls short because hyper-
edges connect multiple nodes at once, making simple
edge counting insufficient for a true assessment of
cluster quality. This highlights the need for hypergraph-
specific metrics that can accurately reflect their distinct
structures.

Example 1. In Figure 1: The three graphs show local
clustering by node I as the seed node, which produces
different clustering results based on different graph
classes as well as metrics. Figure 1A is the clique graph
of hypergraph in Figure 1B. Both use the ratio of the
number of inner and outer edges as conductance for
local clustering methods. Figure 1C then shows the
local clustering performed based on our method.

In Figure 1 A, hyperedges e1 and e6 are ignored
due to the inclusion of the hyperedge, leading to the
loss of information inherent in the hypergraph. This
results in a reduction in the perceived importance of
these hyperedges. This phenomenon demonstrates that
conductance calculation methods effective for graphs
are not fully applicable to hypergraphs. Moreover, the
process of converting hypergraphs to graphs affects the
internal information of the hypergraphs, resulting in a
degradation of clustering quality.
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Figure 1. An overview of local clustering on Clique Graph and Hypergraph.

The clustering differences observed in Figure 1
B and C underscore that varying definitions of
conductance within hypergraphs can yield distinct
clustering outcomes. The cluster in Figure 1 C
is more closely related to the seed nodes. This
highlights the importance of carefully designing
metrics for local clustering that align with the intrinsic
characteristics of hypergraphs. It is crucial to develop
conductance metrics that accurately reflect the complex
relationships and interactions within hypergraphs to
ensure high-quality clustering results.

Contributions. For better quality hypergraph local
clustering, we propose a novel method for computing
high-order conductance specifically tailored for hyper-
graphs. Additionally, we introduce a greedy algorithm
designed to identify local clusters within this frame-
work. We summarize the contributions of this paper as
follows.

1. New Definition for Hypergraph Conductance. We
introduce a degree-based high-order conductance
metric for hypergraphs, considering their unique
properties and characteristics.

2. Algorithms for Hypergraph Local Clustering. We
propose a greedy algorithm capable of identifying
local clusters within hypergraphs, utilizing the
newly devised conductance metric.

3. Extensive Experiments and Case Studies. We
conduct extensive experiments and case studies
to validate the effectiveness of our methods,
demonstrating their practical applicability and
superiority in various scenarios.

Organization. The paper is structured as follows. Sec-
tion 2 reviews related works. Section 3 introduces
the background. Our proposed method for hypergraph
local clustering is detailed in Section 4. Section 5
presents experimental results, while Section 6 con-
cludes the paper.

2. Related Works

Clustering on Graphs. Graphs are extensively used
in data mining to represent complex relationships,
with nodes representing entities and edges representing
their interactions. Clustering involves classifying nodes
in a graph into cohesive clusters based on common char-
acteristics. Several clustering methods have been devel-
oped based on various features in the graph, such as
Distance-Based Structural Graph Clustering [20], Possi-
bilistic Fuzzy C-means Clustering [2] and Conductance-
Based Graph Clustering [18]. Additionally, methods
like SA-Cluster [36] and ACMin [33] address attributed
graph clustering problems. Local clustering, in contrast,
focuses on finding clusters closely related to a given
seed node. One notable algorithm for local clustering
in graphs is NIBBLE [28]. This algorithm leverages
Personalized PageRank (PPR) values to identify small
sets of nodes (clusters) with low conductance. NIBBLE
performs a series of random walks and uses the result-
ing PPR values to find a set of nodes that form a cluster
around a seed node.

Clustering on Hypergraphs. Hypergraph-based mod-
els have become increasingly prominent in research.
Unlike traditional graphs, hypergraphs can capture
higher-order information and represent more com-
plex relationships. Numerous hypergraph-based clus-
tering methods have been developed in recent years.
For instance, JNMF [6] and AHCKA [17] are both
attributed hypergraph clustering methods. Addressing
the problem of local clustering in hypergraphs, a sweep
cut method has been proposed [30] to identify high-
quality clusters containing a given node. This method
uses hypergraph Personalized PageRank (PPR) values
to effectively determine the clusters. Additionally, the
HyperGo algorithm [16] adapts the NIBBLE algorithm
[28]—a truncated random walk-based local algorithm
for graph partitioning—to hypergraphs. Some earlier
methods [1, 38] converted hypergraphs to graphs before
processing them, which resulted in the loss of higher-
order information inherent in the hypergraph. Cur-
rent approaches often either extend graph-based local
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clustering directly to hypergraphs or transform hyper-
graphs into graphs, overlooking their inherent higher-
order features, leading to low-quality local clustering.

3. Preliminaries
In this paper, we address the problem of local clustering
in hypergraphs. This section outlines the preliminaries,
beginning with an introduction to the notations
employed throughout the paper. Subsequently, we
provide the definitions of hypergraphs and local
clustering, and discuss the concept of conductance in
the context of graphs.

Definition 1 (Hypergraph). Let H = {V , E} denote an
unweighted hypergraph, where V is the set of nodes
consisting of n nodes, and E is the set of hyperedges
consisting of m hyperedges. Each hyperedge e ∈ E is a
subset of V .

If a node v exists in hyperedge e, then the hyperedge e
is incident with the node v, and vice versa. For each node
v ∈ V , the degree of node v is represented as δ(v), which
is defined as the number of hyperedges incident to node
v. Similarly, for each hyperedge e ∈ E, the degree of
hyperedge e is represented as δ(e), which is defined as
the number of nodes incident to hyperedge e.

Definition 2 (Dual-Hypergraph). The dual-
hypergraph of a hypergraph H = {V , E} is hypergraph
H ∗ = {V ∗, E∗}. The nodes of the dual hypergraph
V ∗ correspond to the hyperedges E of the original
hypergraph H . The hyperedges E∗ of the dual
hypergraph correspond to nodes V of the original
hypergraph H .

Definition 3 (Sub-Hypergraph). Given a hypergraph
H = {V , E}, where V is the set of nodes and E is the
set of hyperedges, a sub-hypergraph H ′ is defined as
H ′ = {V ′ , E′}. V ′ ⊆ V is a subset of nodes in V . E′ ⊆ E
is a subset of hyperedges from E.

Definition 4 (Local Clustering). Given an unweighted
hypergraph H and a seed node s, this paper focuses on
the methodology for local clustering in hypergraphs.
The objective is to identify a cluster S within the
hypergraph, originating from the given seed node or
seed hyperedge s.

Remark. The resulting cluster S must satisfy the
following criteria:

1. Relevance to the Seed. The nodes and hyperedges
within the cluster should exhibit a high degree
of relevance to the initial seed node or seed
hyperedge. This ensures that the cluster is
contextually meaningful and closely related to the
origin node.

2. Locally Optimal Quality. The cluster S should
achieve a locally optimal quality, defined by
specific metrics or criteria pertinent to the
structure and properties of the hypergraph. This
optimally ensures that the cluster is well-formed
and robust within its local context, even if it is not
globally optimal.

Definition 5 (Conductance on Graphs). Conductance
is a measure of the proportion of relationships that
connect nodes within a cluster S relative to those that
connect nodes in S to nodes outside S. To compute
conductance, count the total number of edges that lie
entirely within the cluster S (internal edges) and the
edges that link nodes in S to nodes outside S (external
edges). The conductance is then defined as the ratio of
internal edges to external edges. This ratio reflects the
cluster’s connectivity relative to its separation from the
rest of the graph.

φc(S) =

∑
e∈Eint

|e|∑
e∈Eext

|e|
. (1)

Conductance is a widely recognized metric for assess-
ing cluster quality, particularly in graph-based commu-
nity detection [32, 35]. Studies have demonstrated that
conductance is effective in evaluating the authenticity
of community structures within real-world graphs. As
outlined in Definition 5, conductance quantifies the
balance between internal and external connectivity of
a cluster [4, 14]. Generally, clusters with higher con-
ductance are indicative of more cohesive and well-
defined communities. This metric is especially valuable
in applications where preserving community integrity
is essential, as it provides insight into the cluster’s
connectivity profile relative to its surroundings [12].

Example 2. Figure 2 depicts a cluster within a graph,
outlined by a red dashed boundary. The edges that
connect nodes entirely within the cluster (internal
edges) and those that link nodes in the cluster to nodes
outside of it (external edges) are shown with green
dashed arrows, respectively. The conductance of the
cluster is calculated using Equation 1, based on the ratio
of internal to external connections. This illustration
helps visualize how conductance quantifies the balance
between internal cohesion and external connectivity for
the cluster.

Example 3. Figure 3 presents an example of a cluster
within a hypergraph, delineated by a black dashed line.
The green dashed arrow indicates the hyperedges that
are fully contained within the cluster, while the two
red hyperedges represent those that are only partially
contained. The conductance of the hypergraph cluster
can be calculated using Equation 2 and 3.
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4. Our Approach
In our proposed method for calculating conductance,
we consider both the degrees of nodes whose hyper-
edges are fully contained within the cluster S and nodes
whose hyperedges are only partially contained within S.

Definition 6 (High-Order Conductance Calculation).
We define the conductance as the ratio between the
sum of the degrees of nodes which in fully contained
hyperedges and the sum of the degrees of nodes in
partially connected hyperedges of the cluster. Formally,

φhc(S) =
∑

v∈S δ(v)∑
v∈S δ(v)

. (2)

Remark. The conductance can also be computed from
the degree of the hyperedge:

φhc(S) =
∑

v∈S δ(e)∑
v∈S δ(e)

. (3)

In conventional graph theory, the method of
calculating conductance does not account for the
higher-order relationships inherent in hyperedges
within a hypergraph. To address this limitation, a novel
hypergraph-based conductance calculation method is
proposed, as outlined in Definition 6. Instead of
directly computing the ratio of the number of edges,
this method employs the ratio of the degrees of
internal and external nodes within the cluster S to
determine conductance. This approach is designed to
better capture the complexity of hypergraph structures.
Consequently, clusters exhibiting higher conductance
values are indicative of superior quality, reflecting a
more robust and meaningful grouping of nodes within
the hypergraph context.

Algorithm 1 calculates the conductance of a cluster
within a hypergraph. The conductance metric is
used to evaluate the quality of the cluster by
examining the proportion of hyperedges that are fully
contained within the cluster versus those that are
only partially connected. The hypergraph H for which
the conductance is being calculated. It consists of

a set of hyperedges, each connecting a subset of
nodes. The cluster S of nodes within the hypergraph
for which the conductance is to be calculated. A
numerical value conductance φhc representing the
conductance of the cluster within the hypergraph. The
algorithm effectively evaluates the quality of clusters
within a hypergraph by analyzing the distribution of
the sum of degrees of fully contained and partially
connected hyperedges. A higher conductance value
signifies a higher quality cluster, as it indicates that
hyperedges entirely within the cluster exhibit higher
degrees. In contrast, hyperedges with lower degrees are
either neighboring hyperedges or located outside the
cluster. This approach ensures that clusters accurately
capture the intrinsic structure of the hypergraph by
emphasizing the connectivity and degree of hyperedges
within the cluster.

Algorithm 1 Calculate Hypergraph Conductance

Require: Hypergraph H, Cluster S
Ensure: Conductance φhc

1: function calculate_hypergraph_conductance(H,
S)

2: for each (he_id, he) in H.hyperedges do
3: if he ∩ S , ∅ then
4: if he ⊆ S then
5: Fully.add(he_id)
6: else
7: Partially.add(he_id)
8: numerator←

∑
he_id∈F

len(H.hyperedges[he_id])

9: denominator←
∑

he_id∈P
len(H.hyperedges[he_id])

10: if denominator = 0 then
11: return∞
12: else
13: return numerator / denominator

Greedy Local Clustering. Algorithm 2 identifies the
next hyperedge to be added to a cluster to maximize
the cluster’s conductance. Conductance is used as a
metric to assess the quality of the cluster, and the
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Algorithm 2 Find Next Hyperedge to Maximize
Conductance
Require: Hypergraph H , Cluster S
Ensure: next_hyperedge_id, max_conductance

1: function find_next_hyperedge(H, S)
2: for each (he_id, he) in H .hyperedges do
3: if he ∩ S , ∅ and he ⊈ S then
4: potential_cluster← S ∪ he
5: conductance← cal_con(H ,

potential_cluster)
6: if conductance > max_conductance then
7: max_conductance← conductance
8: next_hyperedge_id← he_id
9: return next_hyperedge_id, max_conductance

algorithm aims to iteratively improve this quality by
adding the optimal hyperedge. The hypergraph H
within which the clustering is performed. It consists of
a set of hyperedges, each connecting multiple nodes.
The current cluster S of nodes within the hypergraph.
The output of Algorithm 2 is the hyperedge id and the
maximum conductance of the cluster S. The hyperedge
identifier that, when added to the cluster, maximizes
the conductance. The maximum conductance value
achieved by adding the identified hyperedge to the
cluster.

Algorithm 3 identifies a cluster with maximal
conductance within a hypergraph, starting from a
given seed node s. Conductance φhc is a metric used
to evaluate the quality of the cluster, with a higher
conductance indicating a higher quality cluster. The
outputs are the final cluster of nodes identified as
having maximal conductance and the conductance
value of the final cluster S.

This two algorithms iteratively assess the potential
benefits of incorporating each hyperedge into the cur-
rent cluster, ensuring that the selected hyperedge is
the one that optimally enhances the cluster’s conduc-
tance. This iterative process incrementally improves the
cluster’s quality by continuously optimizing its conduc-
tance at each step until the conductance of the cluster
cannot be increased. By leveraging this approach, the
algorithm can efficiently identify clusters with locally
optimal quality.

5. Experiments

Hardware. The algorithms are all implemented in
Python. All of the experiments are conducted on
a Linux machine with Apple M1 Pro chip with
3.22GHz and 32GB unified memory. In this section,
we first introduce the datasets, parameters and
baseline methods used in this experiment. Then the
experimental settings will also be given. Finally, we

will analyze the results of the experiment and give case
studies.
Datasets. We use two real-world network datasets:
Amazon [15], and DBLP [3]. Amazon is a product
co-purchasing network dataset, where the nodes of
the dataset represent the co-purchase scenarios for
commodities and hyperedges represent products. Also
in this dataset, each product belongs to one or
more hierarchically organized product categories, and
products of the same category define a group, which
is considered a ground-truth community [32]. Same as
DBLP scientific collaboration network dataset. Nodes
represent the paper that authors co-authored, and
hyperedges represent the authors. Authors publishing
in the same research area (conference or journal types)
can form a ground-truth communities. Dataset Amazon-
5000 consists 60,320 nodes and 15,845 hyperedges,
average degree of hyperedges is 32.19, min and max
hyperedge degree are 1 and 101. DBLP-5000 consists
197,891 nodes and 87,391 hyperedges, average degree
of hyperedges is 47.09, min and max hyperedge degree
are 1 and 204.
Baselines. Our proposed hypergraph-based high-order
local clustering method is compared with two baselines:

1. Edge-Based Method: Using an edge-based conduc-
tance calculation method shown in equation 1 as
a judgment condition applied to the same greedy
algorithm allows for a better validation of the
effectiveness of the new conductance calculation
method.

2. NIBBLE: The parameters of baseline method
are set as: α = 0.15, ϵ = 1e − 5, window = 3. The
experimental hypergraph data is transformed
into clique graph data and local clustering is
carried out using the NIBBLE algorithm, and the
results can be analyzed to determine whether
transforming the hypergraph into a graph will

Algorithm 3 Greedy Walk Algorithm

Require: Hypergraph H, Seed Node s
Ensure: Cluster S, Conductance φhc

1: function find_cluster_with_max_conductance(H,
s)

2: while True do
3: next_hyperedge_id, max_conductance←

find_next_he(H, S)
4: if max_conductance ≤ current_conductance

then
5: break
6: current_conductance←max_conductance
7: S← S ∪ H.hyperedges[next_hyperedge_id]
8: return S, current_conductance
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Table 1. Comparison Results

Datasets Amazon-5000 DBLP-5000
Methods Avg Prec. Size Avg Prec. Size

Deg-Con Greedy 1.0 13.42 0.8 18.84
Edge-Con Greedy 1.0 12.04 0.8 14.68
NIBBLE on Clique 1.0 9.36 0.5 6.88 0 5 10
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result in the loss of higher information and thus
make the clustering effect decrease.

Settings. We pre-process the datasets to generate
hypergraph datasets. Specifically, we select the top 5000
communities with the highest quality from each dataset
to construct the hypergraph datasets. We then sort all
seed IDs and divide them equally into 100 portions,
randomly selecting one ID from each portion. This
procedure yields a randomized set of 100 seed input IDs
for our experiments. Additionally, we set a maximum of
10 steps for all methods, allowing a maximum of 10 IDs
to be output in the cluster.
Exp 1 - Evaluation of Effectiveness. The effectiveness
of the three methods applied to the two datasets is
presented in Table 1. This analysis primarily focuses
on the precision of the methods’ results and the sizes
of the resulting data clusters. The average precision is
determined by comparing the experimental results to
the ground truth datasets. The cluster size is calculated
using the harmonic mean of the number of hyperedges
and nodes.

The results indicate that our method performs
optimally in the same experimental settings. Despite
ensuring precision, our method consistently produces
the largest cluster size within the constraint of a
maximum of 10 steps. Our method effectively captures
nodes related to seed IDs that contain a higher
information content within the hypergraph structure.
This demonstrates that our method can identify a
substantial number of high-quality IDs related to the
seed ID while maintaining a certain level of precision.
Exp 2 - Conductance with Varying Seeds. We sort the
hyperedges by their degree size, divide them equally
into three parts, and randomly select one hyperedge
from each part as seed input. Figure 4 illustrates the
impact of the degree magnitude of the seed hyperedge
on the growth curve of conductance using our method.
It is observed that the conductance growth curve for
the ID with a median degree is not as rapid as those
for the other two IDs. This slower growth is attributed
to the average degrees of its neighboring IDs, which
lack significantly high-degree IDs that could quickly
enhance the cluster conductance.

Exp 3 - Case study. We conducted a case study
using the DBLP dataset to evaluate our clustering
approach, using the author “Wenjie Zhang” as the seed
author. Cluster A is the result of our method, while
Clusters B and C are generated using the two baseline
methods, respectively. In Clusters A and B, hyperedges
represent authors and nodes represent co-authorships.
Conversely, in Cluster C, nodes represent authors and
edges represent co-authorships. Figure 5 illustrates the
results, each contains the top-10 authors in the local
cluster.

Cluster A includes authors who are highly correlated
with the seed author, such as "Ying Zhang", "Lu Qin",
"Chuan Xiao", and "Jeffery Xu Yu". These individuals
are prominent researchers in the field of graph mining.
As illustrated in the cluster, they have co-authored
many papers. Additionally, several of these authors
have worked at the same institution and completed
their PhD studies under the same supervisor. This
close academic and research relationship underscores
the effectiveness of our method in identifying and
clustering authors with significant collaborative and
academic connections. In Cluster B, however, some
authors with strong relationships to the seed author
in Cluster A, such as "Lu Qin" and "Jeffery Xu Yu",
are not present. Many of the authors in Cluster B,
such as "Hiroyuki Kitagawa" and "Wensheng Luo", do
not have deep relationships with the seed author in
either their field of study or their academic journey.
This disparity highlights the limitations of the baseline
method used for Cluster B, which fails to capture the
significant academic and collaborative connections that
our method effectively identifies in Cluster A. Several
co-authors in Cluster C appear in the same article [13]
as the seed author. By transforming a hypergraph into
a clique graph, nodes that belong to a single hyperedge
become densely connected. This transformation causes
local clustering methods in clique graphs to prioritize
the complete identification of all nodes within the same
hyperedge, especially hyperedges with high degree.

The distributions of margins from each author to the
seed author are presented in Figure 6. In Cluster C,
all authors have a distance of 1 from the seed author,
indicating that this baseline method consistently selects
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Figure 5. Local Clusters for Wenjie Zhang (ID 177)
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Figure 6. Edge distance from seed id

nodes with a direct connection to the seed. When
comparing the margin distributions of Clusters A and
B, it is evident that the overall margin of Cluster A
is larger than that of Cluster B. This suggests that
our method prioritizes authors who are farther from
the seed author, incorporating these important but
less directly connected authors into the cluster. This
broader consideration highlights the effectiveness of
our approach in identifying and clustering significant
authors in the dataset.

6. Conclusion
In this paper, we study the problem of local clustering
in hypergraphs. We observe that existing methods
for hypergraph local clustering often overlook high-
order information of entities, and propose a novel
concept of high-order conductance for clusters, along
with a greedy algorithm that utilizes this concept.
This improved method leverages the complex structural
details unique to hypergraphs, thereby identifying
higher-quality clusters. The experimental results prove
that our approach effectively captures this higher-order
information.
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