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Abstract

Deep neural networks (DNNs) have achieved state-of-the-art performance in classification tasks; however,
they are susceptible to small perturbations that are seemingly imperceptible to the human eye but are enough
to fool the network into misclassifying images. To develop more robust DNNs against adversarial attacks,
research methods have focused on exploring the interaction between a machine learning classifier and a single
adversary. However, these methods do not adequately model the real-world scenarios in which these classifiers
are deployed. In this research paper, we address this gap and propose an adversarial learning algorithm
with multiple adversaries using Bayesian Stackelberg games to model the interaction between the learner
and multiple adversaries. We conclude that the nested Bayesian Stackelberg method is a useful strategy for
developing adversarial learning algorithms to improve the robustness of DNNs. This strategy can serve as a
benchmark in future defense attempts to create DNNs that resist adversarial attacks.
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1. Introduction
With the rapid development of deep learning and arti-
ficial i ntelligence, e nsuring t he r obustness o f machine 
learning classifiers a nd a lgorithms a gainst adversarial 
attacks has become increasingly important [1–4]. The 
vulnerability of machine learning classifiers t o adver-
sarial samples has attracted significant i nterest from 
both the machine learning and security communities, 
raising growing security concerns about the use of 
machine learning in everyday life [5? –8]. Adversarial 
attacks can easily mislead a classification m odel into 
misclassifying an image with high confidence by intro-
ducing small perturbations [9–12]. These perturbations 
are imperceptible to humans but are sufficient for the 
model to classify the images incorrectly [13–17].

Common adversarial defense methods include adver-
sarial training, where neural networks are trained with 
perturbed adversarial samples to improve the robust-
ness of the network [18–21]. This defense enhances 
robustness against adversarial samples but at the cost 
of lower accuracy for the network. For instance, the 
advanced adversarial training algorithm of [22] yielded 
a CNN with 89% accuracy on the CIFAR-10 dataset; 
however, standard training easily yields a non-robust
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network with 96% accuracy on the same dataset [13].
Since attacks do not always occur, it is intuitive for a
defender with prior information about the adversaries
to mix strategies over a distribution of neural networks
rather than select a pure strategy that is only beneficial
during an attack. In such domains as object classifi-
cation, a defender typically has a set of standard and
pre-trained CNNs that minimize the classification loss
on the input datasets, while the adversary has a set of
strategies for optimizing the perturbation vector used
to transform the dataset during an attack [23–26]. Thus,
a defender who can infer prior knowledge about the
adversaries can incorporate this knowledge to derive
high-rewarding optimal mixed strategies without com-
promising robustness [27–32].

Despite the demonstrated efficacy of the Bayesian
Stackelberg game for deriving optimal mixed strate-
gies against sophisticated adversaries in adversarial
settings[33], significant challenges remain in adapt-
ing these strategies to dynamically changing adversary
behaviors and evolving attack methodologies. Current
adversarial training models, predominantly assume a
static nature of adversary strategies or a limited scope
of variability, which may not adequately reflect the
complexity of real-world scenarios where adversaries
continually adapt and optimize their attack vectors.
Therefore, this research involves developing a more
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flexible and adaptive adversarial training in a Bayesian
Stackelberg game model. Such a model needs to effi-
ciently incorporate prior knowledge about adversary
actions and strategies, enabling the defender to dynam-
ically adjust their mixed strategies. This adaptive model
should not only maintain robustness against known
types of attacks but also recalibrate in response to
evolving threats, thereby ensuring sustained effective-
ness of the defense mechanisms in more uncertain
adversarial environments.

Game theory provides a mathematical framework
that guides the search for the optimal strategies players
can adopt in a two or more-player game. Many existing
game theory approaches to adversarial learning focus
on the interaction between the adversary and the
machine learning algorithm to improve robustness
against attacks [34–37]. However, these methods do not
adequately reflect the real-world scenarios in which
these algorithms are deployed [38–41]. This paper
makes the following contributions:

(i) Introduces a framework where a defender
(learner) responds to multiple intelligent
adversaries, each equipped with diverse attack
strategies. This framework is specifically tailored
to address intelligent opponents effectively.

(ii) Shows that the Bayesian Stackelberg equilibrium
model can successfully find an optimal mixed
strategy, especially valuable when the defender
lacks complete information about the adversaries
in real-world scenarios.

(iii) Validates empirically that employing a mixed
strategy, which integrates various defensive
strategies, provides a significant advantage
in dealing with unknown or diverse types of
adversaries.

(iv) Focuses on solving payoff matrices for both
defender and adversaries, emphasizing accuracy
and classification errors, contributing to a refined
understanding of strategy optimization within the
game framework.

(v) Derives an optimal mixed strategy by modeling
the interactions between the defender and adver-
saries as a Bayesian Stackelberg game, enabling
the defender to effectively switch between strate-
gies, such as Convolutional Neural Network
(CNN) models.

(vi) The derived optimal mixed strategy enhances
the robustness of the defender against both
targeted and perturbation attacks, improving
the security and reliability of models under
adversarial conditions.

Hence, we propose a game theory framework using
Bayesian Stackelberg games that models the interaction
between a single defender and multiple adversaries.
By leveraging prior knowledge, this framework aims to
obtain a high-rewarding mixed strategy for a defender
uncertain about the type of adversary it may encounter.

2. Related works
Previous works have shown that conventional methods
of training may not be sufficient to guarantee the
robustness of CNN algorithms [42–45]. Methods such
as data augmentation only provide partial solutions
to misclassifications [14]. Goodfellow et al. used
empirical methods to demonstrate that dimensionality
and image complexity impact a classifier’s robustness
against adversarial attacks in the real world. Hence,
adversarial learning is essential for the development of
CNN algorithms that are less susceptible to practical
attack methods [46–49]. Our study focuses on using
adversarial training in a Stackelberg game to find a
mixed equilibrium strategy that guarantees optimal
accuracy and robustness for a CNN with fixed
dimensions [29][28].

Game theory has been used in numerous works
to model the interaction between a classifier and
adversarial attacks to obtain optimal robust strategies.

To optimize a learner’s defense mechanism for
resilience towards adversarial attacks, it is important
to understand how the attacks are developed [22]. The
essence of adversarial data generation is to understand
different methods for which adversarial data can be
created by a potential adversary [30]. The adversary
aims to perturb a valid data sample such that the
perturbation is imperceptible to the human eye, but
when presented to the machine learner, the data is
misclassified to a wrong class [50]. This is achieved by
adding just enough perturbation to cross the decision
boundary of the learner classifier [51–54]. If the value
of the perturbation is too large, the data becomes
distorted and nonsensical to the human eye and
becomes obviously perturbed. Also, if the perturbation
is too small, the data looks normal to the human but is
not enough to cross the decision boundary and would
not lead to misclassification by the learner [55–58].
Carlini et al. [13] proposed a technique that added
a small vector to an input of a model such that the
magnitude of the vector is equal to the sign of the
gradients of the cost function of the model, which
reliably causes a wide variety of classifiers to misclassify
their input. The technique showed that by training
the model with the worst-case adversarial perturbation
rather than itself helps to regularize the model
and generally makes it perform better even under
adversarial attacks. Goodfellow et al. [29] proposed the
fast gradient method (FGSM) to generate perturbations
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that are added to examples. The work highlighted
the importance of the direction of the gradient of the
cost function in deriving appropriate perturbations.
Madry et al. [28] investigated the robustness of
neural networks through min-max optimization with
Projected Gradient Descent (PGD). The min-max
formulation reflects adversarial training and attacks
against constrained optimization models.

To obtain optimal strategies, attack models need to be
defined explicitly. There is no single learning strategy
that can be unilaterally implemented for all attack
models [30]. Current neural networks and defenses are
only effective against a few attacks, keeping the models
vulnerable to other types of attacks [59–62]. Indeed,
there is a trade-off between accuracy and robustness
in the implementation of defense against adversarial
samples [28, 63, 64]. The large number of scenarios of
attacks and metrics such as L0, L1, L2, and L∞ makes
it difficult to generalize defenses since different levels
of perturbations result in varying attack sensitivity
and resulting adversarial accuracy. Therefore, there is
a need for algorithms that generalize well over multiple
attacks without trading off accuracy for the robustness
of the network.

Grosse et al. [30] model a machine learning scenario
as an interaction between a learner and an adversary.
The learner’s objective is to correctly predict the input
data, while the adversary transforms the data to make
the learner misclassify them to a wrong label or output.
Adversarial learning presents a considerable level of
cybersecurity threat in the domains of machine learning
classifiers, including automated email spam filters,
image classification algorithms for self-driving cars,
medical imaging applications, etc [65, 66]. Kantarcioglu
et al. solved a classification problem using Stackelberg
equilibrium with a simulated annealing algorithm to
obtain an optimal set of attributes. Fiez et al. [32]
also conducted similar work, but rather than assuming
both players knew one another’s payoff function, they
showed that it’s enough to know only the adversary’s
payoff function. Both works modeled the adversary
as the leader who stochastically chooses his strategy,
while the classifier is the follower and searches for
an equilibrium after observing the adversary’s choice.
Madry et al. [28] investigated the robustness of machine
learning classifiers through robust optimization of
mini-max theoretical frameworks. The optimization
method reflected the essence of adversarial training
and attack methods against constrained optimization
[67, 68].

2.1. Preliminaries

Given a classifier fθ : X −→ Y and a dataset (xi , yi)
N
i=1 ∈

X × Y , the adversary finds a perturbation d that changes
x from its original class to adversarial data, yet the

changes on the adversarial data x
′

are imperceptible
to the human eye. This action is called an adversarial
attack. To ensure the attack is undetectable, the
adversary constrains the perturbation within a defined
budget ϵ > 0 in a boundary ball around x such that
Bϵ(x) = {x′ : d(x, xi) ≤ ϵ}. While the classifier is pre-
trained on x by reducing the empirical loss function
ℓ(x, y;θ), the adversary aims to increase the classifier’s
loss on the adversarial data x

′
.

2.2. Game theory perspective
In this game, the defender is the row player and the
adversary is the column player. q denotes the defender’s
strategies consisting of a vector of pure strategies, in
this case, a pre-trained model and an adversarially
trained model. The value of qi is the proportion of
time the defender uses the strategy i in their set q.
Similarly, p denotes the vector of possible strategies
deployed by the adversary. Q and P represent the sets
of both the adversary’s and defender’s pure strategies.
The payoff matrices D and R are defined such that Dij
represents the accuracy of the classifier and Rij is the
misclassification rate of the classifier when the defender
chooses a classifier qi and the adversary deploys an
attack j. Given an adversary, the defender maximizes
their payoff by selecting the optimal classifier to attack
pj as follows:

max
∑
q∈Q

∑
p∈P

Dijpiqj (1)

s.t
∑
q∈Q

qi = 1

The objective function maximizes the defender’s
expected payoff given q, while the constraints ensure
a mixed strategy j for the defender. The adversary
maximizes their payoff function given the policy q of
the defender by selecting a pure strategy pj in response.
The adversary solves the following objective function.

max
∑
p∈P

∑
q∈Q

Rijqipj (2)

s.t
∑
p∈P

pj = 1

2.3. Stackelberg game
Similar to adversarial training , the defender solves its
objective function to minimise the empirical loss for a
classifier q ∈ Q which is either pre-trained on natural
data x or retrained on adversarial data x

′
depending

on the strategy p ∈ P deployed by the adversary.
The solution for the set of strategies q ∈ Q converge
to an equilibrium that minimizes the expectation of
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adversarial loss on the dataset. Q denotes the set of
possible strategies by the defender as shown

Q =

minθ
1
n

∑n
i=1 (l(fθ(xi), yi))

minθ
1
n

∑n
i=1

{
maxx′i∈Bϵ[xi ]

l(fθ(x
′
i), yi)

} (3)

The classifier q ∈ Q selected by the defender updates
its learning parameters θ to the minimising the
adversarial loss across all data points to improve
accuracy. The adversary aiming to increase the loss or
mis-classification rate of the selected classifier, perturbs
the natural data (xi , yi)

N
i=1. To achieve the attack, the

adversary finds an optimal pure strategy p ∈ P , pj = {x
′

:
x + δ} which is the best response to θ that maximizes
the loss. The maximum perturbation δ is derived using
projected gradient descent (PGD) algorithm [28][33].

P B
n∑
i=1

max
x
′
i∈Bϵ(xi ,δ)

(
l(fθ(x

′
i), yi)

)
(4)

where Bϵ(xi , δ) B {x′i : d(xi , x
′
i) ≤ ϵ} denotes the ϵ-ball

around xi . The adversary selects a best response pure
strategy qj that guarantees a high payoff after observing
the defenders selection .

In a Stackelberg game the defender seeks a mixed
strategy of q that maximizes his payoff, given that the
adversary selects an optimal response p (q), hence the
defender solves the following optimization

max
q

∑
q∈Q

∑
p∈P

Dijp (q) qi (5)

s.t
∑
q∈Q

qi = 1

qi ∈ [0...1]

pj ∈ {0, 1}

2.4. Payoff for the Defender and adversary
A Bayesian Stackelberg game models the interaction
between a defender and multiple adversaries, where
the defender only knows the prior probabilities p
of the different types of adversaries t ∈ T . The prior
probability that an adversary of type t will appear is
pt , while the probability of encountering another type
of adversary is 1 − pt . We assume that each adversary
t has two attack strategies: a selective strategy p1 that
focuses solely on the impact of adversarial data x′ on
the classifier selected by the defender, and a universal
strategy p2 that targets the overall accuracy of the attack
on both natural x and adversarial data x′ .

With the PGD attack, we can model a range of
attack types by varying k to adjust the strength of the

attack. A small k value results in a small perturbation
corresponding to a weak attack, while a large k value
leads to a larger perturbation, indicating a stronger
attack. The payoff of strategy p1 is the classification
error caused by the perturbed data D ′ on the classifier
q ∈ Q. Thus, for a classifier qi with accuracy A on
dataset D ′ , the payoff R of adversary tn using the
selective strategy p1 is given as

R1 = 1 − A (6)

The universal adversary strategy p2 also attacks a
classifier using varying values of k in the PGD attack.
However, p2 considers both the classification error
of the selected classifier q ∈ Q by the defender on
adversarial data D ′ and natural data D. The intuition
behind this is that the more a classifier is adapted to the
adversarial data D ′ , the less accurately it predicts on the
natural data D. For instance, a classifier retrained on
D ′ will be less accurate on D because the distribution
of the datasets varies due to the perturbations added
to D ′ . Hence, along with the classification error on D ′ ,
strategy p2 also accounts for the classification error of
the pre-trained classifier on D. The payoff R of strategy
p2 for a classifier qi selected by the defender, given that
the accuracy of qi on dataset D is Aqi (D), is given by

R2 = Aqi (D,D ′) = 2 − (Aqi (D) + Aqi (D ′)) (7)

An adversary t ∈ T changes the value of k in the
projected gradient descent (PGD) attack to vary the
intensity of the attack. A small value of k yields
a small perturbation δ, and vice versa. Therefore, a
spectrum of adversary types can be specified, ranging
from least aggressive to most aggressive. Using the
payoff matrices of the classifier and the adversaries, a
single defender with T possible types of adversaries
can be modeled using decomposed multiple integral
linear programming to obtain an optimal strategy for
the leader as follows:

2.5. Mixed Bayesian Strategy for Multiple
Adversaries
When multiple types of adversaries are considered
in adversarial training, the adversary chooses an
optimal pure strategy after observing the defender’s
strategy. This formulation can be solved using Bayesian
Stackelberg Equilibrium. The defender’s strategy Q is
a vector probability distribution of the defender’s pure
strategies q, where qi represents the proportion of times
strategy i is used. Qt denotes the vector of strategies
for adversary type t ∈ T , and the corresponding payoffs
for the adversary and defender are given as Dt

ij and Rt
ij ,

respectively. M is a large constant, and rt is the upper
bound corresponding to the highest payoff obtainable
by the adversary.
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max
q,p,r

∑
q∈Q

∑
t∈T

∑
j∈J

ptDijpij
t
j (8)

s.t
∑
q∈Q

pi = 1

∑
q∈Q

ptj = 1

0 ≤

rt −∑
p∈P

At
ijq1

 ≤ (
1 − pti

)
M

qi ∈ [0...1]

pj ∈ {0, 1}

rt ∈ R

The prior probability of the occurrence of an
adversary type t is denoted by pt . pi denotes the
probability that the defender selects a mixed strategy
i. ptj represents the probability that the adversary of
type t adopts a pure strategy. Constraints 1 and 4
enforce a feasible mixed strategy for the defender, while
constraints 2 and 5 enforce a feasible pure strategy for
the adversary. Constraint 3 ensures the feasibility of the
adversary’s problem by guaranteeing an optimal pure
strategy with a maximum payoff of a =

∑
q∈Q Rijpi when

pt = 1. The quadratic programming problem in (8) can
be linearized by combining the terms piq

t
j such that

ztij = piq
t
j , leading to the following equations [33].

max
q,p,r

∑
q∈Q

∑
t∈T

∑
j∈J

ptDijz
t
ij (9)

s.t
∑
q∈Q

∑
p∈P

ztij = 1

∑
p∈P

ztij ≤ 1

∑
q∈Q

pi = 1

0 ≤

rt −∑
p∈P

At
ij

∑
p∈P

ztij


 ≤ (

1 − pti
)
M

∑
p∈P

ztij =
∑
p∈P

z1
ij

ztij ∈ [0...1]

pj ∈ {0, 1}

rt ∈ R

3. Experiment
3.1. Discussion
In this experiment, we use the CIFAR-10 dataset as the
test data to be perturbed by the adversary and evaluate
the impact of adversarial attacks on four different
CNN classifiers: MobileNet, ResNet, VGG13BN, and
ShuffleNet. The original CIFAR-10 dataset is evaluated
on each of the pre-trained models to obtain the initial
accuracy A of the models. The perturbations added
to the natural dataset are derived using the Projected
Gradient Descent (PGD) algorithm, with varying k
values to adjust the strength of the attack. A higher
value of k corresponds to a higher attack strength, and
vice versa. The attack algorithm takes in the natural
dataset and returns adversarial datasets generated with
respect to the corresponding pre-trained model and
bounded by epsilon ϵ. The pre-trained models are then
evaluated with the generated adversarial dataset to
observe the accuracy Ak of the models after the PGD
attack, which is lower than the initial accuracy A, as
shown in Table 1. Using adversarial training, the pre-
trained models are retrained to obtain models robust to
perturbed adversarial data. The accuracy results show a
significant improvement from the pre-trained models.
The accuracy A

′
k of the retrained models is also shown

in Table 1. The accuracy of the model decreases with
the strength of the PGD attack, which can be varied
by changing the value of k. Increasing the value of k in
the PGD algorithm produces more perturbed CIFAR-10
datasets, leading to more misclassifications of the pre-
trained models. For the pre-trained ResNet-53 model,
the accuracy reduced from 94.24% to 10.24% with
a PGD k value ranging from 1 to 7 (k = {1, 3, 5, 7}).
Similarly, ShuffleNetv2, MobileNetv2, and VGG13BN
also show reduced accuracy as k increases, as depicted
in Figure 2.

To observe the impact of adversarial data on
the robust retrained model, the retrained model is
evaluated on the natural dataset. We find that the
accuracy A

′
k of the retrained model on the natural

dataset is significantly lower than the accuracy of the
pre-trained model on the natural dataset.

We performed experiments on four pre-trained clas-
sifiers: MobileNet, ResNet56, VGG13BN, and Shuf-
fleNet. Using the PGD attack, we modeled two pairs
of attacks: a mild adversarial perturbation and a strong
perturbation attack, corresponding to a weak attacker
g and a stronger attacker G by varying the k value
in the PGD algorithm. The pairs of attacks represent
the adversary type; a lower value of k denotes a weak
adversary g, while a higher value of k denotes a stronger
adversary G. In an attack scenario, adversary type t1,
which is the weak adversary g, will have a lower k
value compared to attack t2, which is the stronger
adversary G. In addition to these, each adversary has
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Table 1. Mixed Bayesian Stackelberg Accuracy A∗ for Multiple Adversary Types k = (1, 3)

Models A k Ak% A
′
k% A∗min% A∗max%

vgg13_bn 94.24 1 53.41 17.93 38.05 43.81
3 14.38 16.97 –

mobilenetv2_x1_4 93.88 1 52.31 10.54 43.29 46.39
3 21.72 10.78 –

shufflenetv2_x2_0 93.63 1 53.76 20.80 39.20 43.08
3 15.14 20.09 –

ResNet-56 94.46 1 54.06 32.00 45.84 48.69
3 22.93 32.32 –

Table 2. Mixed Bayesian Stackelberg Accuracy A∗ for Multiple Adversary Types k = (5, 7)

Models A k Ak% A
′
k% A∗min% A∗max%

vgg13_bn 94.24 5 25.17 15.66 35.96 37.59
7 10.24 17.58 –

mobilenetv2_x1_4 93.88 5 32.37 10.67 40.99 42.23
7 16.94 10.72 –

shufflenetv2_x2_0 93.63 5 25.96 20.77 37.06 38.56
7 10.69 20.25 –

ResNet-56 94.46 5 33.50 34.53 44.66 46.14
7 17.85 33.65 –

two strategies to choose from to maximize their payoff.
The payoff for each strategy is derived from Equations
(6) and (7) to confront a defender that chooses between
deploying a pre-trained or retrained model.

As an illustration, a defender deploys a pre-trained
model with an accuracy of 94.24% on the CIFAR-10
dataset. After an adversary uses PGD with k = 1 to
perturb the dataset, the pre-trained model’s accuracy
drops to 53.41%. However, by using adversarial
training to retrain the pre-trained model on the
perturbed dataset, the accuracy improves from the
previous 53% to 63%. On evaluating the retrained
model on the original CIFAR-10 dataset, we observe
that even though the retrained model has improved
accuracy on the adversarial data, its accuracy on the
original data dropped to 17.93%. The accuracy of the
retrained model facing an adversary t2 with k = 5 is
even lower. The adversarial training accuracy is 46.92%,
while the retrained accuracy on CIFAR-10 is 16.97%.

To obtain a model that performs well on both natural
and adversarial datasets, a mixed Bayesian Stackelberg
algorithm is employed. The problem is modeled with
two types of adversaries using two different strategies:
a global strategy and a direct strategy. The payoffs
for both adversary strategies are given by Equations
(6) and (7). The optimal mixed strategy of the
defender is obtained by solving the mixed integer
quadratic equation (9) and the corresponding accuracy
payoff. The goal is to develop a randomized classifier
selection strategy such that the adversary cannot deploy
a perturbed dataset to undermine the accuracy of
the selected classifier. The relationship between the

Figure 1. Robust Accuracy for CNN Models Considering
Adversary Types k = (1, 3)

defender and the adversary is framed as a Bayesian
Stackelberg game consisting of t adversary types,
1, . . . , t. The defender’s set of pure strategies includes
two CNN models: a pre-trained model and a retrained
model. The defender can choose a mixed strategy such
that the adversary is uncertain about which CNN model
is being deployed, although the adversary may be aware
of the mixed strategy the defender is implementing.
For instance, the adversary can observe how often each
CNN model is deployed over time and then select
an attack strategy that guarantees maximum impact.
The adversary will receive a lower payoff if it uses a
direct attack targeted at a pre-trained model while the
defender deploys a retrained model. Conversely, the
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Figure 2. Robust Accuracy for CNN Models Considering
Adversary Types k = (5, 7)

Figure 3. Accuracy of CNN Models based on the Prior
Probability of Adversary Type

Figure 4. Accuracy of CNN Models based on the Prior
Probability of Adversary Type k = (5, 7)

adversary will achieve a higher payoff if it uses the
global attack while the defender chooses a pre-trained
model.

To reconcile the effect of the significant reduction
in accuracy, the Bayesian Stackelberg algorithm finds
a mixed strategy, as shown in Fig. 1, for the defender.
This strategy ensures that the accuracy after retraining

Figure 5. Accuracy of CNN Models based on the Prior
Probability of Adversary Type k = (1, 3)

the model is consistently better than the accuracy of
the pre-trained model when attacked by the strongest
adversary, and also better than the accuracy of the
retrained model on the original CIFAR-10 dataset.
The pre-trained VGG13BN model experienced the
highest impact from adversarial attacks, with a notable
reduction in accuracy after perturbation for both k =
3 and k = 7. Figure 1 shows that the pre-trained
accuracy Ak and the retrained accuracy A

′
k after the

attack are 25.17% and 15.66% for k = 3, respectively,
and even lower, at 10.24% and 17.58% for k = 7, as
shown in Fig. 2. However, the mixed strategy for
the defender, which combines both pre-trained and
retrained models, achieves an accuracy of 35.96% as
shown in Fig. 1. Similar results are observed for
MobileNetV2, ShuffleNetV2, and ResNet-56.

Before committing to a mixed strategy, the defender
considers the prior probability P of encountering either
type of adversary. With varying probabilities P that
a strong adversary G may not appear, the defender
only begins to see a notable increase in accuracy
when there is at least 60% certainty that they will
confront a weaker adversary g, as shown in Fig. 7.
This indicates that, with the knowledge that the models
are more susceptible to a strong attack, the mixed
strategy accuracy is conservative and only improves
when there is a higher likelihood that a strong attack
will not occur. As shown in Fig. 5 and Fig. 6, the
knowledge of the prior probability of an adversary
type perturbing the dataset also affects the accuracy
achieved by the mixed strategy implemented by the
defender. Intuitively, a higher prior probability of a
weak adversary g perturbing the dataset, as opposed
to a stronger adversary G, results in higher accuracy
from the mixed strategy. Conversely, if there is a higher
probability that the adversary is stronger, the resulting
accuracy from selecting the mixed Bayesian Stackelberg
strategy will be lower.
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4. Conclusion

In this paper, we develop a Bayesian Stackelberg game
in which one of the players, a defender (learner),
responds to the actions of other players (adversaries),
who are multiple intelligent opponents. The defender
directly searches for an optimal, high-rewarding
strategy given prior knowledge of the adversaries. Our
research demonstrates the effectiveness of the Bayesian
Stackelberg equilibrium model in obtaining an optimal
mixed strategy when confronted with adversaries,
each having multiple attack strategies. Our approach
empirically shows that the mixed strategy is the best
solution when the defender is unaware of the type of
adversaries it may encounter in real-world applications.

The Bayesian Stackelberg game formulation centers
on solving the payoff matrices of the defender and
adversary strategies for accuracy and classification
errors. We derive an optimal mixed strategy by
formulating the interaction between the defender
and adversaries as a Bayesian Stackelberg game. The
solution enables the defender to mix strategies more
effectively between CNN models and exhibit increased
robustness to targeted and perturbation attacks.
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