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Abstract 
 
INTRODUCTION: This paper investigates a UAV path planning algorithm in a UAV-assisted network scenario, integrating 
both global and local path planning. Firstly, the ASPSO (Adaptive Spherical Vector-Based Particle Swarm Optimization) 
algorithm is proposed for offline path planning to obtain key global path points, providing a general flight strategy for the 
UAV. During the flight, the UAV continuously detects surrounding obstacles in real-time. If newly detected obstacles are 
encountered, the ECAVF (Enhanced Collision Avoidance Vector Field) algorithm is employed for local path planning to 
dynamically avoid obstacles and ensure the safety of the UAV. 
OBJECTIVES: The objective of this paper is to enhance the path planning capability of existing algorithms in complex 
three-dimensional environments, enabling UAVs to operate efficiently and safely. 
METHODS: The proposed ASPSO algorithm determines parameter ranges for different scenarios during the initialization 
phase, effectively reducing initialization time. Additionally, a multi-strategy optimization approach is introduced during the 
search process. Expanding the search space in the early iterations helps escape local optima, while minor perturbations are 
introduced in the later iterations to continue exploring within the neighbourhood of high-quality solutions. Finally, a method 
utilizing virtual control points for path refinement is proposed to smooth the trajectory. The ECAVF algorithm incorporates 
a dynamic adjustment factor based on relative velocity to optimize the vector field in the presence of multiple moving 
obstacles. By integrating factors such as distance and velocity, a hybrid vector field is constructed, demonstrating superior 
robustness in complex multi-obstacle scenarios. 
RESULTS: The proposed method is compared with the PSO (Particle Swarm Optimization), the Spherical Vector-based 
PSO, and the original CAVF (Collision Avoidance Vector Field) method. The results demonstrate that the proposed method 
exhibits higher initialization efficiency, superior initial solution quality, and the ability to obtain a more optimal global path. 
Additionally, it shows stronger dynamic obstacle avoidance capabilities and a higher success rate in avoiding obstacles. 
CONCLUSION: These results demonstrate that the proposed method effectively enhances the quality of global path planning 
solutions and improves the success rate of dynamic obstacle avoidance. 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) are a type of flying 
mobile robots capable of performing various tasks and 
operating in dynamic environments. Advances in 
technology and reduced unit costs have expanded the 
application of UAVs in civilian markets. Due to their 
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flexibility, manoeuvrability, and the ability to equip them 
with various sensors, transmission devices, and visual 
capture equipment, UAVs have found widespread use in 
multiple fields. UAVs have strong manoeuvrability [1], 
and with the advancement of technology, they are used in 
detection, and search and rescue. UAV path planning needs 
to consider task time, flight distance, and safety, and UAVs 
may encounter many obstacles during flight, such as 
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buildings, mountains, radar areas, etc. The path of UAVs is 
research hotspot, and it is necessary to design the path 
under various constraint conditions, fulfil task [2].Path 
planning for UAVs is one of the critical challenges that 
need to be addressed, encompassing both global path 
planning and local path planning. Global path planning, 
also known as static planning, requires prior knowledge of 
the environment. It involves planning a path between a 
given start point and target point in a fixed environment, 
aiming to find an optimal or feasible path that allows the 
UAV to reach the destination with minimal cost. Local path 
planning, on the other hand, focuses on real-time, online 
planning in partially unknown or dynamically changing 
environments to adapt to various dynamic changes in 
uncertain conditions. With the continuous research in this 
field, scholars have proposed many methods. Traditional 
search methods include A* algorithm, Fast RRT [3], and 
Artificial Potential Field (APF). However, these methods 
have slow convergence speed. Therefore, swarm 
intelligence algorithms have been proposed, including 
genetic algorithm (GA) [4], grey wolf algorithm (GWO) 
[5], ant colony optimization(ACO) [6], particle swarm 
optimization (PSO) [7] and other ways. A survey [8] 
proposes a new framework for UAV planning using an 
improved PSO algorithm. Improved PSO algorithm 
applied to get the best path. A survey [9] proposes a path 
design and energy control based on the prediction of user 
movement information. Advocating a Three-Phase 
Machine Learning Process. Get user's location and path 
design of UAVs. Many UAVs serve as agents that learn the 
best action by communicating with the environment. In 
PSO, because the update of particle relies on the global 
optimal one. A survey [10] proposes SDPSO way, it 
binding the update of the PSO global solution with SA. It 
can to improve the diversity of the method. The particle 
diversity’s lack can make it fall into local optima easily. 
Due to poor detection ability and lack of particle diversity 
of PSO, they are easily affected by local. In survey [11], a 
reconfigurable intelligent surface (RIS) assisted UAV relay 
communication system is proposed, optimizes the drone's 
flight path, RIS's passive beamforming, and power 
distribution to maximize downlink throughput. 

2. System Model 

2.1. System Model 

Our geomorphological data in real digital elevation model 
is obtained and the higher natural mountains in the flight 
environment are constructed on its basis. The mountain 
information is described by the function: 
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The n is peaks amount, the peak center i is (𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , 0), 𝑥𝑥𝑠𝑠 
and 𝑦𝑦𝑠𝑠 is the attenuation of the height, denoted as the slope. 
Threats such as buildings, radar detection, extreme 

weather. May also be encountered during the flight, here, 
these threats are abstractly represented as cylinders. The 
coordinates of the circle centre in the horizontal plane of 
cylinder i is (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 0). Figure 1 is the environment. 

 

Figure 1. Flight Environment 

The communication link from UAV to user can be 
considered as an air to ground transmission [12]. It is 
assumed that the UAV to user link experiences LoS and 
NLoS are random. The probability of LoS occurrence for 
this link is provided as follows: 
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The ( ) ( )( )1sin /t h t d t−=θ . UAV’s altitude above ground 

is ( )h t  and the distance of link is ( )d t . The 1b  and 2b  are 
fixed, which are impacted by environment. NLoS 
probability is given by 1NLoS LoSP P= − . The power gain can 
be calculated as 

( ) [ ] 11 2
0 LoS LoS NLoS NLoSg t K d P P −− −= +µ µ       (3) 

Where ( )2
0 4 /cK f c= π , defined α as path loss parament. 

The cf  is carrier frequency and c is light speed. r(t) is the 
user’s rate at time t 
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Where 2
0BN=σ  with 0N  is the power spectral density of 

the additive WGN . ( )p t  is UAV transmission power ,

( )g t  is UAV to user channel gain  

2.2 Problem Formulation 

In order to maintain efficient and safe UAV flight in 
complex environments, the path should be optimal by 
multiple constraints in the actual environment. The UAV 
path is controlled by the key points on the path, a UAV 
flight path T , C  represents the set of n  necessary path 
point positions, and ( ), ,i i i iC x y z= . The distance between 
the two control points is calculated using the Euclidean 
metric, and path length cost is calculated as 
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UAVs are also` constrained in terms of flight height, with 
minimum and maximum height limits between the node 
and the ground surface being mina  and maxa . respectively.

max mina a a∆ = − , the optimum height of the flight in relation 

to the surface of the obstacle is min max

2best
a a

a
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= , the 

altitude cost is computed as 
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Summing iA  for all points gives the height cost： 
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Assuming that all obstacle sets are O . The centre of its 
projection on the xoy  plane is 0c  and the radius 0R , the 
length of the UAV's body is l , and the dangerous distance 
for collision between the UAV and obstacles is Z  as 
shown in Figure 2. The half of the central angle 
corresponding to the secant of circle C is denoted as uθ , 
and uθ  is calculated as 
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To avoid collisions, the maximum value of uθ  is mθ , and 

mθ  is calculated as 
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The ratio of the two is recorded as rθ , and u
r

m
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threat cost calculation for obstacles is as follows: 
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Figure 2. Obstacle Threat 

The smoothness of the path is also an important metric to 
look at. As shown in Figure 3. 

 

Figure 3. Path smoothness 

The direction angle iφ  and the climbing angle iψ .they are 
calculated as 
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The path smooth cost is then computed as: 
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The overall cost is a linear weighting of the four terms, the 
overall cost is calculated as 

( ) ( ) ( ) ( )sum 1 1 2 2 3 3 4 4w w w wF F T F T F T F T= + + +     (14) 

For a detected obstacle with its centroid initially at position 
ΩoP ∈ , its velocity is denoted as N

oV ∈ ¡  if it moves. The 
obstacle's boundary bχ  can be represented by variables 
longitude angle u  and latitude angle v , where [ ]0 2u , π∈  

and [ ]0v ,π∈ , as shown in Equation (15). 
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Here, ( )a t , ( )b t  , and ( )c t  are time-dependent functions 
representing the radii of the ellipsoidal obstacle along the 
x, y, and z axes, respectively. The influence distance of the 
obstacle is denoted as ρ . 
The motion of the UAV is determined by double-integrator 
dynamics, where the system state encompasses the 
dynamic behavior of two integral variables: position and 
velocity. 

 p v,v u= =& &                             (16) 
Under the influence of double-integrator dynamics, the 
state of the UAV is represented by Equation (17). 
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 3 Adaptive Spherical Vector Based PSO 

In this paper, ASPSO is proposed based on SPSO 
algorithm [13], which is improved in three aspects: 
initialization process, search process and path 
optimization. 

3.1 Spherical Vector based PSO 

In SPSO algorithm, the location information of particle is 
represented as a vector containing the magnitude, azimuth 
angle and elevation angle. Path P  includes n  nodes, and 
P  is as follows: 

( )1 1 1 2 2 2, , , , , ,..., , ,n n nP r r r= φ ψ φ ψ φ ψ              (18) 

The velocity associated to that particle is defined as a 
vector: 

( )' ' ' ' ' ' ' ' '
1 1 1 2 2 2, , , , , ,..., , ,n n np r r r∆ = φ ψ φ ψ φ ψ         (19) 

The position and velocity information of each node can be 
represented ( , , )ij ij ij iju = ρ φ ψ  and ( , , )ij ij ij ijv = ∆ ∆ ∆ρ φ ψ . The 
update equations for SPSO are given by: 

( ) ( )1
1 1 2 2

t t t t t t
ij ij best ij best ijv wv p u g u+ = + − + −η γ η γ     (20) 

1 1t t t
ij ij iju u v+ += +                             (21) 

3.2 An Initialization Method Based on 
Environmental Information 

Unlike traditional particle swarm optimization algorithms 
in Cartesian coordinates, each particle is independently and 
randomly generated without any connection to each other. 

In a spherical coordinate system, there is a strong 
correlation between particles, and the latter particle is 
generated in a coordinate system with the previous particle 
as the origin. Therefore, there is a strong chain reaction 
between particles, and the flight environment in this paper 
is complex, which has high constraints on the UAVs. 
The position information of particles consists of magnitude, 
azimuth angle and elevation angle. It can also be 
interpreted as the step size r , turning angle iφ  and the 
climbing angle iψ  during the search. Due to the uneven 
terrain, there may be a significant height difference 
between the starting and ending points. For the climbing 
angle, a larger range may directly miss the optimal solution, 
while a smaller range may not be able to adapt to the 
undulating changes of the terrain. Therefore, it is necessary 
to set the range of climbing angle changes for different 
terrain information. 
Start point is ( ), ,S S SX Y Z , the terminal point is 

( ), ,E E EX Y Z , Z indicates absolute height, the distance 
between the two is d  and the height difference is h . The 
number of particles in the ASPSO algorithm is N . The 

maximum search step size is set to max
2 dr
N
⋅

= . This is to 

avoid skipping the optimal solution directly if the r  is too 
large, and to avoid reducing the search ability if the r  is 
too small. The turning angle ( ),∈ −φ π π , allows particles 
to have the maximum search range on the horizontal plane. 
The setting of the climbing angle range, as follows： 

 
max

2 hatan
r
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=ψ                                   (22) 

Based on the point location, combined with the search step 
size, controlling climbing angle within a reasonable range 
can improve the initialization speed while seeking an 
optimal initial solution. 

3.3 A Multi Strategy Optimization Method 

The position parameters of control points during the flight 
process play a decisive role in the entire path. For this 
purpose, a joint differential evolution multi-strategy 
optimization method is proposed. Considering the dense 
density of obstacles, in order to avoid interference from 
obstacles, it is need to continuously adjust the direction of 
flight. In the early stages of iteration, combined with the 
idea of differential evolution, the search range is expanded. 
In the late stages of iteration, for solutions with low fitness 
and high quality, the idea of Cauchy mutation is proposed, 
a small disturbance is introduced to further search in the 
neighborhood space of the optimal solution. The process of 
multi strategy optimization method as shown in Figure 4. 
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Figure 4. Multi strategy Flowchart 

Due to the large population size, in order to improve 
running speed and reduce computational complexity, a 
portion of the population is selected for each iteration 
process. For each iteration, we refer to the selection rate 
function to determine the size, as shown below： 

( )e f
s f

r r i
r r

Inter
− ×

= +
                        (23) 

Where fr  is the initial selection rate, er  is the final 
selection rate, Inter  is times, i  is the current times. 

_s num  is the number of population, _s num is defined as 

_ ss num npop r= ⋅                            (24) 

At the beginning of the iteration, refer to the selection rate 
formula and select populations. For each population, the 
number of control points is N , and the turning angle 
parameters of the control points in population p  is 
represented as 

( ),1 ,2 , 1 ,, ,..., ,p p p p N p Nphi phi phi phi phi−=        (25) 

Mutation generates mutation vectors. Mutation vector is 
represented by ,p nv . The mutation strategy refers to 
DE/current to rand/1, but due to the limitation of the 
optimal solution of the early iterations, we only add 
random variables to the current solution as follows 

( )1 2p p r rv phi F phi phi= + ⋅ −               (26) 

Where 1r  and 2r  are mutually exclusive random numbers 
and F is scaling factor. 

Crossover operation produces a random set of vectors, we 
use a binomial cross strategy, the formula as shown below 

,
,

,
1, 2, ,p n

p n
p n

v rand CR or n j
u n N

phi otherwise=

< = =


L  (27) 

N  is dimensions and CR  is crossover rate. The rand  is 
a uniform distribution between 0 and 1. j  is a random 
integer between 1 to N . 
Select operation to compare the fitness of the original 
solution with the fitness of the solution after mutation and 
crossover and preserve populations with lower fitness. 
In the late stages of iteration, it is determined whether the 
selected population fitness is in a relatively optimal state. 
If it is a good solution, Cauchy mutation is performed. 
Taking the turning angle as an example, the Cauchy 
mutation operation is shown as follow 

( ), , 0 ,; ,p n p n p p nphi phi k C R x phi= + ⋅ ⋅γ         (28) 

Where k  is a random number from 1 to -1. Ranking all 
population fitness in descending order, pR  is the 
proportion of the fitness of the population p  relative to all 
fitness values. ( )0; ,pC R x γ  represents the probability 
distribution function of the Cauchy function. After the 
Cauchy mutation, fitness is calculated again, comparing the 
original population fitness with the population fitness, 
retaining the population with the lower fitness, and 
continuing to produce the next generation of populations. 

3.4 A Path Optimization Strategy Based on 
Virtual Control Points 

In a simple and flat terrain environment, the influence of 
terrain height can be ignored, and the constraints on the 
altitude of flight nodes are relatively weak. However, in 
this paper, due to the complex environment, dense 
obstacles, and high terrain fluctuations, the distance 
between control points in a population may be far apart. 
Although each individual control point satisfies the 
constraint conditions of flight altitude, when all control 
points form a continuous path, there may be collisions 
between the path and the ground, which directly poses a 
safety threat to the flight nodes. Therefore, we propose a 
path optimization strategy based on virtual control points. 
On the basis of the initial path, a single dimensional small 
step search method is used to find path segments that do 
not meet height constraints, and then combined with the 
terrain environment, virtual control points are constructed 
for Bezier curve fitting. This process optimizes the existing 
path while ensuring low fitness, reducing path anomalies 
such as emergency turns and sudden height changes. 
In previous studies, scholars directly create spline 
interpolation based on the control points, and then obtain 
optimized curves based on the interpolation results or 
construct a Bezier curve through control points. But the 
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environments provide a small margin of variation space for 
UAVs. Blind optimization may result in trajectories 
colliding with obstacles. 

Single Dimensional Small Step Search Method 
In practical environments, UAVs move in three-
dimensional space, and the initial path is a three-
dimensional path. Here, a single dimensional small step 
search method is proposed. For the initial path, the initial 
path is divided into small path segments based on control 
points as nodes. Gradually search along a dimension with 
smaller step sizes to obtain regions that do not meet the 
constraint conditions. 
An initial path is defined as xyzL , the starting point of the 
path is ( ), ,S S SX Y Z  and the endpoint is ( ), ,E E EX Y Z . The 
points set is { }1 1 1, , ; , , ;...; , , ; , ,S S S n n n E E EX Y Z X Y Z X Y Z X Y Z . 

The path xyzL is actually composed of ,xyz iL ,
1, 2, , , 1i n n= +L . 

Single dimension small step search method is as follows, 
taking the search process along the x axis direction as an 
example, assuming that the search step size is lS , the 
distance interval in the x axis direction of each key point is 
expressed as follows 

1 1

2 2 1

1

1 E

...

S

n n n

n n

x X X
x X X

x X X
x X X

−

+

∆ = −
 ∆ = −

∆ = −
∆ = −

                            (29) 

On this basis, the number of search steps for ,xyz iL  is istep  

and s i
i

l

x
tep

S
 ∆

=  
 

. ,xoy iL  is the horizontal projection of 

,xyz iL . Starting from the ,xyz iL  starting point, taking the x 
axis direction of the path as the exploration direction and 

lS  as the exploration step size. The set of x axis coordinates 

of all search points is { },1 ,2 , 1 ,, ,..., ,
i iis is is is step is stepx x x x x−= . 

Based on the function of ,xoy iL , obtain the corresponding 

ordinate isy . Based on the function of ,xyz iL , obtain the 
corresponding altitude coordinate isz .Analyse whether the 
altitude of the search point satisfies the flight constraints of 
the UAV, and for the search point that does not satisfy the 
height constraints, construct the virtual control point with 
reference to the height of the terrain. The coordinates are 
denoted as ( ), ,iv iv ivx y z , and the height is set as follow 

( ),iv iv iv bestz Peak x y a= + ⋅α                    (30) 
Where ( ),iv ivPeak x y  is the terrain altitude, besta  is the 
flight optimum altitude, and α  is the altitude adjustment 
factor. 
 
 

Bezier Fitting Based on Virtual Control Points 
For each small path ,xyz iL , a set of starting, ending, and 
virtual points will be obtained (if there is a case where the 
search points do not satisfy the height condition 
constraints). 
The Bezier curve can be represented as a product of a basis 
function and a vector, as follows 

1
( ) ( )

n

in i
i

B t B t P
=

= ∑                            (31) 

The Bernstein basis function as follow 
( ) (1 ) , 1, 2,...,i k n i

in nB t C t t i n−= − =               (32) 
In practical engineering problems, high order Bezier curves 
are often not used because their curvature is too high, 
leading to a decrease in smoothness. Therefore, the 
commonly used fourth order Bezier curve in engineering is 
used for path smoothing. The curve consists of five points. 
In this paper, if there are too many path nodes, the higher 
height nodes are prioritized as control points. If there are 
less than five path nodes, use a low order Bessel curve for 
optimization. 

3.5 Experimental Studies and Comparative 
Analysis 

To exam ASPSO method, it will be compared with 
multiple algorithms. We visualize the path during the 
simulation process. The three-dimensional space for flight 
is 4 km × 4 km × 1 km. For the transmission model, the 
following [12] gives the parameter settings . 

Table 1. Parameters Setting 

Parameter Description Value 

cf  Carrier frequency 2GHz 

p  UAV output power 30dBm 

0N  Noise power spectral -170dBm/Hz 

B  Bandwidth 1MHz 

LoSµ  Los additional path loss  3dB 

NLoSµ  NLoS additional path loss 23dB 

1b  Environmental parameters 0.36 

2b  Environmental parameters 0.21 

The is 0.891 and the ending point is set directly above the 
user, with the UAV positioned at a height of 200 meters 
from the user. 

Comparative Analysis of Initialization Process 
Compare and analyze the initialization iterations times and 
fitness of initial population of PSO, SPSO, and ASPSO 
algorithms for different scenarios. Refer to Table 2 for 
specific location settings.  



Research on Hybrid Path Planning Algorithms for UAVs in Complex Environments 
 
 
 

7 

Table 2. Parameters 

Scenario UAV position User Position 
Scenario 1  (600,400,220) (2100,2100,200) 
Scenario 2 (2400,3500,190) (3500,500,200) 
Scenario 3 (1000,2000,150) (3500,800,200) 
Scenario 4 (3200,400,190) (500,2300,200) 

The population size is 1000, the particles number is 4, 
min 0.1w = and max 0.7w = , 1 1.3=η and 2 1.5=η . Linearly 

decreasing inertia weight method is adopted. The climbing 

angle of SPSO is set as
4 4

 ∈ − 
 

，
π πψ . The Table 3 

compares the initialization times and initial fitness of 
different algorithms in the same scenario. The comparison 
situation as shown in Figure 5. 

Table 3. Result 

 1 2 3 4 
 T F T F T F T F 

PSO 17 17939 11 18485 10 26466 7 27820 
SPSO 3 10818 50 15106 11 16436 1000 Inf 

ASPSO 1 9809 9 12490 1 16805 4 18665 

 
(a) 

 
(b) 

Figure 5. Comparison of Iteration Times and Fitness 

From the above analysis, it can be seen that in any 
situation, ASPSO can find its initial solution with fewer 
iteration times. The search method can accelerate the 
efficiency of the algorithm. Although sometimes its initial 
fitness value is not the minimum value among the three 
comparison algorithms, it can also be minimized as much 
as possible through subsequent iterations. Although PSO 
can obtain initial solutions every time, its fitness value is 
relatively high and the quality of the solutions is relatively 

low. SPSO was unable to initialize successfully in certain 
scenarios due to environmental constraints. The 
initialization strategy for complex environments has 
significant advantages in initialization speed and initial 
solution quality, providing a good foundation for the 
subsequent search of the algorithm. 

Analysis of Multi Strategy Optimization Method 
To analyze the effectiveness of multi strategy optimization 
method, compare ASPSO, SPSO, and PSO. Set up 
different scenarios for simulation, and the setting of 
algorithm parameters is the same as the previous section. 
Visualize all paths and compare the fitness of each 
algorithm. Refer to Table 4 for specific location settings. 

Table 4. Position Parameters 

Scenario UAV position User Position 
Scenario 1 (600,1350,190) (3500,2400,200) 
Scenario 2 (500,2500,190) (3500,500,200) 

In Scenario 1, the path plots of each algorithm are 
compared with the fitness in Figure 6. The blue line is 
ASPSO algorithm, red line represents the SPSO algorithm, 
and the yellow line represents the PSO algorithm. 

 
(a) 

 
(b) 

Figure 6. Scenario 1  

In Scenario 2, the path plots of each algorithm are 
compared with the fitness as shown in Figure 7. 
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(a) 

 
(b) 

Figure 7. Scenario 2  

Analysis shows that regardless of whether the target 
point needs to pass through a complex environment, the 
ASPSO algorithm can always quickly obtain high quality 
solutions, with fast convergence speed and high solution 
quality. In the later stages of iteration, it can also 
continuously optimize and reduce fitness based on the 
better solution. 

Path Optimization Process 
The process of path optimization strategy based on virtual 
control points is as follows. The initial path has a collision 
with the terrain. For each small path segment, a single 
dimensional small step search method is performed. For 
search points that do not meet the height constraint 
conditions, virtual points are constructed according to the 
terrain conditions, as Figure 8. Red triangle represents the 
constructed virtual points. 

 
(a) 

 
(b) 

Figure 8. Initial Path and Virtual Control Points 

For path segments with virtual control points, using the 
constructed virtual points as control points, keeping the 
starting and ending points of the original path segment 
unchanged, construct a Bezier curve for path smoothing, as 
shown in Figure 9. The optimized curve is shown by the 
yellow line. 

 

Figure 9. Optimized Path 

If there are enough particles, collisions can also be 
avoided in situations with large terrain fluctuations. Set the 
algorithm particle count to 13, do not construct virtual 
control points, and compare it with the ASPSO algorithm, 
as Figure 10. The blue line is path produced by ASPSO. 
The yellow line is the comparison path with a higher 
number of particles. 

 
(a) 

 
(b) 

Figure 10. Path Comparison Image 
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The comparison of fitness is shown in Figure 11. The 
comparison reveals that ASPSO still has a significant 
advantage over other methods with higher particle counts. 

 

Figure 11. Fitness Comparison Image 

4 Enhanced Collision Avoidance Vector 
Field  

In this paper, the ECAVF algorithm is developed as an 
improvement over the original Collision Avoidance Vector 
Field algorithm [14]. The enhancements primarily focus on 
two aspects: the optimization of the vector field for moving 
obstacles and the synthesis of a multi-obstacle vector field. 

4.1 Collision Avoidance Vector Field 

To prevent collisions between the UAV and obstacles, the 
collision avoidance vector field f  must satisfy the 

following non-penetration condition at any point bp  on the 
obstacle boundary. 

 ( ) ( ) 0b b b bf P n P P χ⋅ ≥ ∈)                (33) 

Here, ( )bn P)  is the unit vector perpendicular to the 
obstacle boundary and pointing outward. The vector field 
f  is defined as the superposition of the repulsive force rf  

from the obstacle and the attractive force af  toward the 
target position, as shown in Equation (34). 

 ( ) ( ) ( )r af P f P f P= +                   (34) 
The repulsive force of the obstacle is expressed as: 

 ( )
( ) ( )( ) ( )

( )0

C C
e

r C

γ P R P P n P P P P P ρ
f P

P P P ρ

 − − ≤= 
− >

)
   (35) 

where eP  is the target position of the UAV, and 

( )c bP P χ∈  represents the point on the obstacle boundary 
closest to point P . 
The attractive force toward the target position is expressed 
as: 

 
( )

( ) ( )
( )

C
e e

a C
e

P P Rn P P P P P ρ
f P

P P P P P ρ

 − − − ≤= 
− − >

)         (36) 

Therefore, the force acting on the UAV at position P  is 
expressed as: 

( )
( ) ( )( ) ( ) ( )

( )

c C
e e

C
e

P P γ P n P P n P P P P P ρ
f P

P P P P P ρ

  − + − − ≤  = 
− − >

) )
 (37) 

Where γ  is a correlation factor determined by the 
relationship between the obstacle and the UAV's position, 
defined as follows: 

 ( ) ( )
( )( )2

1
2 1 2

λd P
γ P

λd P
= +

+
                          (38) 

Where ( )d P  is determined by the distance between the 
obstacle and the UAV, as well as the obstacle's influence 
distance, specifically expressed as follows: 

 ( ) ( ) ( )1 2

1 1d P
ρ P ρ P

= +                           (39) 

Where ( )1ρ P  represents the closest distance between the 
UAV and the obstacle surface, denoted as 

( ) ( )1
Cρ P P P P= − , ( )2ρ P  is ( ) ( )2 1ρ P ρ P ρ= − , and λ  is a 

parameter determining the shape of the γ  curve. 
If the obstacle is in motion, its velocity is denoted as OV  , 
and the velocity of the obstacle boundary is also OV . The 
movement of the obstacle causes changes in the vector field. 
Here, only the component of the obstacle's velocity in the 
normal direction of its boundary that is greater than zero is 
considered to influence the vector field ( n>0OV ⋅ ) ). This 
ensures that the UAV is not attracted to the obstacle when 
it is moving away. To account for the obstacle's motion, an 
additional term ( ) ( )v Of P γ P V=  is introduced into the vector 
field. The total vector field within the obstacle's influence 
range is expressed as: 

 ( ) ( ) ( )sum vf P f P f P= +                       (40) 

Considering the scenario with multiple obstacles, let 
( )C

j jd P P P= −  be the distance from point P  to the 
nearest point ( )C

jP P  on the boundary of obstacle j. When 
there are N  obstacles, the vector field is extended by 
weighting and summing the local CAVFs, with the weights 
determined by their distances to the UAV's current position. 
This ensures that the vector field at the boundary of each 
obstacle is solely determined by the local vector field ( )kh P  
associated with that obstacle: 

 
1

k

N

k
k

( ) w ( ) ( )
=

=∑h P P h P                      (41) 

 

1

 j k

j
k

N

k

k N

k j

N

d
w ( )

d

≠

= ≠

=
∏

∑∏
P                             (42) 
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4.2 Optimization of the Vector Field for 
Moving Obstacles 

When moving obstacles are present in the scenario, the 
changes in the vector field are typically more complex. 
During operation, the UAV can detect environmental 
changes within a certain range, such as the position, size, 
and velocity of obstacles. The direction, speed, and 
position of the obstacles influence the vector field 
differently. In the presence of moving obstacles, the 
original CAVF algorithm, as referenced in Equation (40), 
multiplies the obstacle's velocity by γ  as an increment. 
The value of γ  is related to the distance between the UAV 
and the obstacle. As shown in Figure 12. 

 

Figure 12. The graph of the γ function. 

When the obstacle moves slowly and there is no 
significant opposing motion relative to the UAV, the 
original method can successfully avoid the obstacle. 
However, when the obstacle moves at a high speed or 
exhibits a pronounced opposing motion relative to the 
UAV, the repulsive force from the obstacle and the 
additional vector field generated by its motion are 
insufficient to enable the UAV to urgently avoid the 
obstacle in a dynamic state. As a result, the UAV may 
ultimately collide with the obstacle. 

To address the obstacle avoidance problem for UAVs in 
complex dynamic environments, a dynamic vector field 
adjustment factor based on the relative velocity between 
the obstacle and the UAV is proposed. This adjustment 
factor dynamically adapts the avoidance strategy by 
incorporating relative velocity information to meet the 
requirements of obstacle avoidance under varying obstacle 
motion states. When the obstacle moves slowly and there 
is no significant opposing motion relative to the UAV, the 
original method can effectively avoid the obstacle. 
However, in scenarios with high relative velocities or 
rapidly moving obstacles, the avoidance strategy requires 
further optimization. The specific process is as follows. 

 

Figure 13. Schematic diagram of the adjustment 
factor construction. 

The unit vector from the UAV to the closest point on the 
obstacle is denoted as n) . When the angle between the 
obstacle's velocity direction and the unit vector is acute, the 
obstacle tends to move toward the UAV. In this case, 
considering the obstacle's velocity as ov , its velocity 
component along the line connecting the obstacle's centre 
and the UAV is 1ov . The UAV's velocity is uavv , and its 
velocity component along the same line is 1uavv , with a 
magnitude of 1uavv . The relative velocity between them is 

1 1r uav ov v v= − , with a magnitude of rv . The adjustment 
factor is defined as follows. 

 
1

r

UAV

v
k

v
=                                  (43) 

The vector field in the presence of moving obstacles is then 
defined as: 

( ) ( )sumf P f P k n= + × )
                        (44) 

Within the influence range of the obstacle, when the 
relative velocity between the UAV and the obstacle is high, 
the construction of the vector field prioritizes obstacle 
avoidance as the dominant strategy. At this stage, the 
obstacle avoidance term dominates the vector field, 
ensuring that the UAV can promptly adjust its course to 
evade the obstacle. Once the obstacle is successfully 
avoided and no longer poses a threat, the vector field 
gradually transitions to guide the UAV back toward the 
target point, ensuring the continuity and completeness of 
the mission. 

4.3 Construction Method of the Hybrid 
Vector Field 

During the UAV motion planning process, it is essential to 
consider the combined effects of multiple obstacles on the 
UAV's velocity. When the UAV is within the influence 
range of multiple obstacles, its flight state is subject to 
various interferences, making the construction of a 
reasonable hybrid vector field crucial. The algorithm 
proposed in this section designs the synthesis of the vector 
field from multiple perspectives and dynamically adjusts 
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the vector field. Based on the direction and distance 
between the UAV and the target position, as well as the 
relative positions and velocities of the obstacles, the vector 
field weights are determined, enabling the UAV to avoid 
obstacles while efficiently moving toward the target 
position. Additionally, a buffer mechanism is introduced to 
smooth the velocity vector, reducing the impact of 
instantaneous fluctuations on the UAV's motion. 
When multiple obstacles are present, the algorithm 
calculates the cosine of the angle between each obstacle 
and the UAV's position, combines it with the distance to 
the obstacle to determine the weight factor, and then 
computes the weighted potential field. The specific details 
are as follows: 
For a given moment, the UAV's current position P  is 
within the influence range of I  obstacles. The center 
position of the i-th obstacle is 

iobsP , the current velocity is 

denoted as 
iobsv , and the vector from the i-th obstacle to the 

UAV position is given by: 

 i obs i

i obsi

obs P P
i

obs P P

v d
cosθ

v d

−>

−>

⋅
=

⋅
                   (45) 

Here, cos θ  reflects the influence of each obstacle's 
motion direction on the UAV. If this value is negative, it is 
replaced by an infinitesimal positive number. The weight 
calculation method based on the cosine of the angle is given 
by: 

 

1

cos

cos

I

j i

j
i

I

j

j

i I

i

motion  W
θ

θ

≠

= ≠

=
∏

∑∏
                   (46) 

Let disti denote the distance between the i-th obstacle and 
the UAV. Then the distance weighting is given by: 

 

1

I

j i

j
i j i

j

i II
dis  

dis

dist
W

t
≠

= ≠

=
∏

∑∏
                         (47) 

Therefore, the vector field weighting for the i-th obstacle is 
given by:  

 1 2i i iW a distW a motionW= ⋅ + ⋅            (48) 
Where a₁ and a₂ are constants, set to 0.9 and 0.1 
respectively in this study. Let fi denote the vector field of 
the i-th obstacle.Then the combined influence of I obstacles 
on the UAV is calculated as the linear weighted sum of 
their corresponding vector fields, given by: 

 
1

I
sum ii i

f W f
=

= ⋅∑                     (49) 

To reduce the impact of instantaneous velocity fluctuations 
on the UAV's motion and enhance the stability and 
reliability of the algorithm, a buffer update and smoothing 
mechanism is introduced. A buffer of size M , denoted as 
prev _ v , is initialized to store the UAV's historical 

velocity vectors. All elements in the buffer are initialized 
as zero vectors or the UAV's current velocity vector. Each 

time a new velocity vector v  is calculated, it is stored in 
the buffer. During each velocity update, valid velocity 
vectors are extracted from the buffer, and their average is 
computed as the final velocity vector. By averaging the 
historical velocity vectors, the impact of instantaneous 
fluctuations on the UAV's motion is minimized, improving 
the algorithm's stability. 
Additionally, the UAV's flight process must account for its 
velocity constraints. Given the maximum speed limit maxv  
for the UAV, when the UAV is outside the influence range 
of any obstacle, the vector field is solely determined by the 
attractive force from the target position. To incorporate the 
UAV's speed constraints, the vector field is calculated as 
follows: 

 ( )
( )

( )

C
e e od

Ce
max e od

e

P P P P P ρ, P P D
f P P P *V P P P ρ, P P D

P P

 − − > − <


=  −
− > − > −

  (50) 

Here, odD  is the oscillation avoidance distance of the 
vector field. By setting different distance intervals to 
control the vector field's intensity, the UAV can maintain a 
stable and relatively high speed during long-distance flight. 
When approaching the target position, the vector field's 
intensity decreases, effectively preventing motion 
oscillations caused by excessive speed and inertia, which 
could otherwise lead to overshooting the target position 
and difficulty in achieving precise and stable arrival. This 
significantly improves positioning accuracy. 

4.4 Experimental Studies and Comparative 
Analysis 

To systematically validate the effectiveness of the dynamic 
vector adjustment factor based on relative velocity and the 
construction of the hybrid vector field, the algorithm is 
tested in a three-dimensional dynamic environment to 
evaluate its adaptability across different scenarios. This 
section conducts simulations in a 400×400×200 (unit: 
meters) three-dimensional space, deploying spherical 
obstacles to simulate UAV path planning tasks in airspace 
with dense obstacles. A progressive scenario design is 
adopted, generating datasets in three stages: Scenario 1 
(low complexity) contains 3-8 obstacles, Scenario 2 
(medium complexity) expands to 9-20 obstacles, and 
Scenario 3 (high complexity) includes 21-30 obstacles. 
Each scenario strictly generates 100 independent samples, 
totalling 300 environmental configurations. The role of the 
relative velocity-based adjustment factor is verified. 

Obstacle generation employs a hybrid motion model: 
static obstacles are modelled based on the start-end point 
connection line, forming static threats near the flight path. 
For moving obstacles, speeds are maintained between 10-
20 m/s, with a 50% probability of moving along the path 
direction (same or opposite to the UAV) and a 50% 
probability of moving toward the path center, creating 
cross-interference. 
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For UAV parameter settings, the maximum flight speed 
is 30 m/s, equipped with an omnidirectional binocular 
vision system and a three-dimensional infrared sensor on 
the fuselage bottom, with a ranging scope of 0.4-22 m and 
a detection range of 0.4-200 meters. During dynamic 
obstacle avoidance, the UAV can detect obstacle 
distributions within a 200-meter range. In summary, the 
obstacle avoidance effectiveness of the proposed method is 
compared and analyzed across the three scenarios of 
varying complexity, with statistical results as follows: 

Table 5. Statistical results of obstacle avoidance 
success rates in multi-obstacle scenarios. 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

Original Method 100% 89% 71% 
Improved Moving 
Obstacle Vector Field 100% 100% 87% 

Improved Moving 
Obstacle Vector Field + 
Enhanced Hybrid 

100% 100% 93% 

Analysis shows that in Scenario 1 with fewer obstacles, 
both the original algorithm and the proposed methods 
achieve successful obstacle avoidance. As the number of 
obstacles increases in Scenario 2, the original method fails 
in some cases, while the two improved methods maintain a 
100% success rate. In the more complex Scenario 3, all 
methods experience some failures, but the proposed 
method achieves the highest success rate, demonstrating 
strong robustness even in highly complex environments. 
To visually illustrate the obstacle avoidance process, a set 
of data from Scenario 1 is selected, and the proposed 
method is applied for local path obstacle avoidance. The 
obstacle positions, velocity parameters, and a radius of 40 
meters are shown in Table 6. The path obstacle avoidance 
process is depicted in Figure 14 and 15. 

Table 6. Table of Obstacle Positions and Velocity 
Parameters. 

Position (m) Velocity 
(m/s) Position (m) Velocity 

(m/s) 
(333,29,191) (-13,11,-3) (138,252,125) (14,13,-14) 
(358,65,57) (0,0,0) (141,233,99) (15,17,0) 
(13,409,103) (-7,-6,12) (141,183,66) (0,0,0) 
(62,253,114) (9,8,-9.3) (198,224,90) (9.5,15,15) 

  
(a) (b) 

  
(c) (d) 

Figure 14. Obstacle Avoidance Process Using the 
Proposed Method in Scenario 1 

 

Figure 15. Velocity Curve During the Obstacle 
Avoidance Process. 

5 Conclusions 

We propose a ASPSO method based on SPSO. Based on 
the transmission model, determine the height between the 
drone and the user. The ASPSO algorithm first initializes 
based on environmental information, which can effectively 
shorten the initialization times and upgrade the initial 
solution for different scenarios. Introducing the idea of 
differential evolution during the search process makes it 
easy to escape form the local optima during the early stages, 
and can continue to explore in the neighbourhood space of 
high-quality solutions in the later stages of iteration. 
Finally, a path optimization strategy is implemented to 
avoid collisions with terrain and ensure flight safety. 
Compared with other algorithms, ASPSO algorithm has 
excellent performance, can obtain high quality solutions, 
and has better exploration ability in complex three-
dimensional environments. 

The proposed ECAVF algorithm addresses the issue of 
obstacle avoidance failure in scenarios with multiple 
moving obstacles by introducing a dynamic vector field 
adjustment factor based on relative velocity. When the 
UAV operates within the influence range of an obstacle, 
the vector field is dynamically adjusted according to the 
relative velocity between the UAV and the obstacle. When 
the relative velocity is high, the primary task is to avoid the 
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obstacle, after which the UAV proceeds toward the target 
position. During the synthesis of the vector field, the 
weights are determined by considering the direction and 
distance between the UAV and the target position, as well 
as the relative positions and velocities of the obstacles. This 
enhances obstacle avoidance capabilities and provides an 
effective guarantee for the safe flight of the UAV. 

Acknowledgement 

This work was supported by the National Natural Science 
Foundation of China Key Project (Grant No. 62431009). 
This work is an extended version of our conference paper 
“UAV Path Planning in Complex Environments for UAV 
Assisted Networks” previously presented at WiSATS 2024. 

References 
[1] Debnath D, Vanegas F, Sandino J, et al. A Review of UAV 

Path-Planning Algorithms and Obstacle Avoidance 
Methods for Remote Sensing Applications[J]. Remote 
Sensing, 2024, 16(21): 4019. DOI:10.3390/rs16214019  

[2] Luo J, Tian Y, Wang Z. Research on unmanned aerial 
vehicle path planning[J]. Drones, 2024, 8(2): 51. 
DOI:10.3390/drones8020051  

[3] Li Y, Wei W, Gao Y, et al. PQ-RRT*: An improved path 
planning algorithm for mobile robots. Expert systems with 
applications. 2020; 152:113425. 
DOI:10.1016/j.eswa.2020.113425  

[4] Pehlivanoglu YV, Pehlivanoglu P. An enhanced genetic 
algorithm for path planning of autonomous UAV in target 
coverage problems. Appl Soft Computing. 2021; 
112:107796. DOI:10.1016/j.asoc.2021.107796  

[5] Zhao D, Cai G, Wang Y, et al. Path planning of obstacle-
crossing robot based on golden sine grey wolf optimizer[J]. 
Applied Sciences, 2024, 14(3): 1129. 
DOI:10.3390/app14031129  

[6] Hu G, Huang F, Shu B, et al. MAHACO: Multi-algorithm 
hybrid ant colony optimizer for 3D path planning of a group 
of UAVs[J]. Information Sciences, 2025, 694: 121714. 
DOI:10.1016/j.ins.2024.121714  

[7] Song B, Wang Z, Zou L. An improved PSO algorithm for 
smooth path planning of mobile robots using continuous 
high-degree Bezier curve. Appl Soft Computing. 2021; 
100:106960. DOI:10.1016/j.asoc.2020.106960  

[8]  Sonny A, Yeduri SR, Cenkeramaddi LR. Autonomous 
UAV path planning using modified PSO for UAV-assisted 
wireless networks. IEEE Access. 2023. 
DOI:10.1109/ACCESS.2023.3293203  

[9] Liu X, Liu Y, Chen Y, et al. Trajectory design and power 
control for multi-UAV assisted wireless networks: A 
machine learning approach[J]. IEEE Transactions on 
Vehicular Technology, 2019, 68(8): 7957-7969. 
DOI;10.1109/TVT.2019.2920284   

[10] Yu Z, Si Z, Li X, et al. A novel hybrid particle swarm 
optimization algorithm for path planning of UAVs. IEEE 
Internet Things J. 2022;9(22):22547-22558. 
DOI:10.1109/JIOT.2022.3182798  

[11] Liu X, Yu Y, Li F, et al. Throughput maximization for RIS-
UAV relaying communications. IEEE Intelligent 
Transportation Systems. 2022;23(10):19569-19574. 
DOI:10.1109/TITS.2022.3161698  

[12] Mozaffari M, Saad W, Bennis M, et al. Wireless 
communication using unmanned aerial vehicles (UAVs): 
Optimal transport theory for hover time optimization. IEEE 
Trans Wireless communication. 2017;16(12):8052-8066. 
DOI:10.1109/TWC.2017.2756644  

[13] Phung MD, Ha QP. Safety-enhanced UAV path planning 
with spherical vector-based particle swarm optimization. 
Appl Soft Computing. 2021; 107:107376. 
DOI:10.1016/j.asoc.2021.107376  

[14] Braquet M, Bakolas E. Vector field-based collision 
avoidance for moving obstacles with time-varying elliptical 
shape. IFAC-Papers Online. 2022;55(37):587-592. 
DOI:10.1016/j.ifacol.2022.11.246  

https://doi.org/10.3390/rs16214019
https://doi.org/10.3390/drones8020051
https://doi.org/10.1016/j.eswa.2020.113425
https://doi.org/10.1016/j.asoc.2021.107796
https://doi.org/10.3390/app14031129
https://doi.org/10.1016/j.ins.2024.121714
https://doi.org/10.1016/j.asoc.2020.106960
https://doi.org/10.1109/ACCESS.2023.3293203
https://doi.org/10.1109/TVT.2019.2920284
https://doi.org/10.1109/JIOT.2022.3182798
https://doi.org/10.1109/TITS.2022.3161698
https://doi.org/10.1109/TWC.2017.2756644
https://doi.org/10.1016/j.asoc.2021.107376
https://doi.org/10.1016/j.ifacol.2022.11.246

