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Abstract

This study presents an adaptive control method for a 3-degree-of-freedom parallel Delta robot using a neuron PID controller
combined with a recurrent fuzzy neural network (RFNN) identifier. Due to the nonlinear kinematics and dynamics, coupling,
and load changes of the Delta robot, traditional PID controllers often do not ensure optimal control quality, thereby requiring
adaptive intelligent control techniques [1], [2]. In the proposed model, the PID is represented as a linear neuron capable of]

self-updating the parameters K,, Ki, Kdq based on the Jacobian information estimated online by the RFNN identifier,
inheriting the backpropagation learning principle in the recurrent neuro-fuzzy system [3]. MATLAB simulation results show
that the response time is improved, the steady-state error is eliminated, and the system maintains its stability when the load
changes, which is consistent with previous studies on neural network-based adaptive PID for nonlinear systems [4]—[6]. This
method contributes to affirming the effectiveness of combining PID neuron and RFNN for precise control of parallel robots.
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1. Introduction logic are applied to improve the control of Delta robots [1-
4] [7-8][10]. RENN controllers and identifiers have been
developed and applied to non-linear systems. During the
control process, the RFNN identifier can estimate the
sensitivity of the object, which is called Jacobian
information. This information is used to train the RFNN
controller online. Therefore, by using RFNN, the control
technique can flexibly adjust the online parameters to suit
the control conditions.

Parallel robots are one of the topics that have been
developing rapidly in recent years. With flexible structures
and advantages in speed, force and accuracy, delta robots
have become popular and widely used in industry [11]. One
of the studies is to use PD and LQR controllers to compare
their effectiveness in tracking the trajectory [5][6][9]. In
addition, in controlling delta robots, many research groups
use non-linear PID controllers to help robots eliminate
noise and have better performance [4][5][7][8][9]. Not
only that, the technique of using self-tuning controllers in
PID helps robots to self-correct errors during operation, but
in return, this is one of the most difficult techniques in
control [1-10]. PID controllers have been successfully
developed for robots from 2-6 DOF, however, PID
controllers are often effective with fixed input parameters.
Continuously changing parameters such as load, external
conditions, etc., the PID controller does not achieve the
desired performance. Therefore, neural networks and fuzzy
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Unlike conventional single-neuron PID controllers whose
parameter adaptation relies solely on tracking error signals,
the proposed approach integrates a recurrent fuzzy neural
network (RFNN) identifier to estimate the system Jacobian
online. This Jacobian information reflects the real-time
sensitivity of the Delta robot dynamics and is incorporated
into the learning rule of the single-neuron PID controller.

As a result, the controller can adapt not only to tracking
errors but also to variations in nonlinear dynamics,
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coupling effects, and payload changes, which are typical
challenges in high-speed Delta robot applications.
Furthermore, the proposed controller is implemented as a
coordinated MIMO structure, where each robot arm is
regulated by its own neuron PID trained by a corresponding
RFNN identifier, making it suitable for strongly nonlinear
parallel manipulators.

2. The Proposed Approach

2.1. The model of Delta robot

In this study, the Delta robot model is established based on
commonly adopted simplifying assumptions in the
literature [7]—-[9]. The links BiDi are represented by two
lumped mass points located at Bi and Di, connected by
rigid and weightless bars.

These assumptions significantly reduce model complexity
while maintaining sufficient accuracy for control design
and performance evaluation. Although the inertia of the
links and vibration effects may introduce minor dynamic
discrepancies during high-speed motion, such modeling
errors are compensated by the adaptive learning capability
of the proposed neuron PID controller combined with the
RFNN identifier. Therefore, the simplified model remains
suitable for validating the effectiveness of the adaptive
control strategy.

Figure 1. Robot delta Urus [9]

The set of robot includes:

q= [919293xpyvzp] )
2.2. Establishing the linking equation

According to Figure 1, we determine the linking
equation for point By and Di:

1 - (rD1 - rB1)T(rD1 - r31) =0 2)

2 EA

Where:
7, : Position of vector OB, in the Oxyz coordinate.
Tp, : Position of vector OD in the Oxyz coordinate.

The vector equation 7, in Ox1y1z; coordinate:
g, =T, + Ugyp, = [R+1lcos6; 0 —lisin 91]T 3)
Where:
r,=[R 0 0]
Us,p, = [licos8; 0 —lising,]”

We determine the z - rotation matrix:
cosa; —sina; O
Apa, = [sin a, cosa 0]
0 0 1
Thus, we determine the rp, in Oxyz coordinate:

cosa; —sina; O0][R +1;cosb,
T'Bl =

4

sina; cosa; O 0
0 0 1 _ll Sln 91
R cos a; + 1; cos a, cos 6’1]

)

= |Rsina; + [; sina; cos 8,
_ll Sll’l 01
The p,in Oxyz coordinate:

Xp cosa; —sina, Ol [r]

Yo|+|sina; cosa; 0]]0
Zp 0 0 11t0

Xp +7cosay

= [y +rsine
Zp
Combine the (6) and (5), we have:
(R —r1)cosa; + I; cosay cosB; — x,
=|(R—71)sina; + l;sina; cosO; — y, | (7)
—l;sin6; — z,

Substituting the (7) into (2), we get the equation for first
link. Similar to second and third links, we get the link
equation as follows:

T'D1 =T1p + UPU1 =

T'Dl - TBl

fi=13—- [(R —r)cosa; + 1, cosa; cos; — xp]z
- [(R —r)sina, + [ sina; cos 6
- yp]z—[l1 sin6, + Zp]2 =0

fo=8B—[(R—-r)cosa, + 1, cosa, cos 8, — x,[,]2
- [(R —r)sina, + [; sina, cos 0,
- yp]z—[l1 sin6, + Zp]2 =0

fs =8B —[(R—r)cosas + 1, cosa cos 85 — x,[,]2
- [(R —7r)sina; + [; sina; cos 04

— yp]z—[l1 sin 65 + Zp]2 =0

2.3. The kinetic and potential energy of Delta
robot

The kinetic energy of robot include the kinetic energy of
AiBi stages, kinetic energy of mass mb is set as B1 and
kinetic energy of moving table and mb masses:
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1 . . .
T = E(Ily + mbl%) (012 + 622 + 932)

1 - - -
+§(mp + 3mb)(xp +yp2+2zp ) 9
The potential energy of robot:
1
m=-gl (Eml + mb> (sin6; + sin 6, + sin 05)

—g(mp + 3mb)zp (10)

2.4. Establish the motion differential

equations for the Delta robot.

We use Lagrange factor to establish the motion
differential equation with the following form:

d(aT> oT 2’1 Ofi o _ 1, an
at\ag,) " 3a, = %7 L Migg, T A
i=
Where
qy: is the extrapolation coordinates of the robot
fi: Linking equation
Qy: Extrapolation force

Substituting the kinetic and potential energy into (11),
we have the motion equations of delta robot:

.. 1
(hy + myl$)0, = 911(5"11 + my)cos 0; + 14

o1l sinf; (R —r) — cosa,sin 6,x, (12
-\ = sin aysin 0.y, — cos 0,z, )

. 1
(Ly + myl} )6, = gll(zm1 +my)cos 0, + 1,
sinf,(R —r) — cos a,sin O,x
—2/1111< 2(R =) e ”) (13)

— sin a,sin 8,y, — cos 6,2z,

. 1
(Ly + myl} )63 = gll(zm1 +my)cos 03 + 14
sinB5;(R —r) — cosazsinf;x
— 220 ( 3(R =) e ”) (14)

— sin assin 83y, — cos 63z,

(m, + 3my)%, = —24;(cosa; (R —1)
+ licos ascos 6, — xp)
— 2, (cosay(R — 1) + lycos aycos 0, — x,)
- 22, (cosa3 (R —r1) + lycos azcos 65 — xp)

(15)

(my +3my)y, = —2A(sina; (R — 1) + l;sin a;cos 6,
- Yp)
— 22;(sinay(R — 1) + lysina,cos 6, — yy)
- 22,(sinas(R — 1) + lysinascos 65 — yp) (16)
(m, + 3my,)z, = —(my, + 3my,)g + 24,(z, + l;sind;)
+ 215(2, + l;5in0;)

+21;5 (zp + llsin03) a7

2 EA

W

2.5. Designing the Single Neuron PID

Single Neuron PID is an adaptive PID controller, in
which the parameters Kp, Ki, Kd are considered as the
weights of a neuron and are automatically adjusted
according to the learning rule to optimize the error.

Controller structure
With 3 inputs: Kp, Ki, Kd, the PID controller set as:
u(k) = u(k — 1) + K,Ael + K;Ae2 + K;Ae3  (18)
Where:

Ael = e(k)
Ae2 = J’ e(k)dk
0
de(k)
Ae3 = ik

Controller training

The goal of training the single neuron PID controller is
to adjust the network's weight set wli (i=1,2,3) to minimize
the cost function

1 2 1 2
E(K) = 5€2(k) = 5 [rer (0) = y(0)]
Where:
Yref (k): The reference signal

y(k): System response
To adjust the weight set wi; (i=1,2,3), the gradient
descent method was applied

(19)

K, = wig(k+ 1) = wy (k) + Awyy (k) (20)
Ki =wip(k + 1) = wyp(k) + Awy, (k) (21)
Kq = wis(k +1) = wyz(k) + Awy3(k) (22)

Where Aw,y 4 (k), Awy, (k) and Awy5 (k) are
considered by:
0E (k)
Ay () = o (_ _>
11(k) =1 dw,, (k)
dy (k)
_ _.K
= —nre(k) —au(k)Ael (23)
0E (k) )
() = ki (__
12(k) =n dwy, (k)
ay(k)
= — K; - -
n*ie(k) au(k)LIeZ (24)
0E (k)
Ay (K) = n¥a (_ _>
15lk) =7 w3 (k)
dy (k)
= —nKa 7
n*de(k) 6u(k)Ae3 (24)
Where:
r]KP, 77K £ an are learning rate constant.
gigg: is the respone sensitivity, which is the Jacobian
information.

2.6. Designing the RFNN Identifier
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RFNN Identifier structure

The RFNN identifier has 4 layers, with an input layer
of 2 nodes, a fuzzy layer of 10 nodes, a fuzzy rule class of
25 nodes, and an output layer with 1 node.
Layer 1: Input consists of 2 nodes that convey the input
values to the next layer.

0i (k) = x{ (k) + 6] ()0 (k = 1), (i =12)  (25)
Where:
6}: connection weight at current k.
x1(k) = u(k): The current control signal.
x3(k) = y(k — 1): The past output of response

Layer 2: Fuzzy layer: This layer consists of (2x5)
nodes, each node representing a related function of the
Gaussian form with mean value m;; and standard deviation
Oij

0% (k) = exp {—

Layer 3: Law layer: this layer consists of (5x5) nodes.
The output of the g node in this class is determined as
follows:

(0 (k) — mij)z
O',:]'

03 (k) = HOiZqi(k),(i =12,..5¢; = 12,..,5) (27)
i

Layer 4: Output layer: This layer includes 1 linear
neuron with the defined output as follows:

01 (k) = Y whOP(O, (i =1, =12,..25) (28)
J

RFNN Identifier training

The goal of an online training algorithm for RFNN
identifier is to adjust the weighting sets of the network and
the parameters of the fuzzy class dependent functions to
achieve the minimum value of cost function

1
E(0) = 5700 = ym (O

1 4 2
= () - 0 (K] (29)
The weight of each RFNN network layer is updated as

follows:

7 eows, 0 ALl

K (Uij)z

2[0};(k) —mi-]2
n° >y elywh 0f —1———= 31)
zk: o (Uij)
01k +1) = 6; (k) +
—2)[0} (k) — my;] 0} (ke —
ngze(k)wﬁc Og( 2)[Oz](k) mU]O”(k 1)

K (Uij)z

(30)

(32)

2 EA

}, (i=12j=12..,5)(26)

The RFNN identifier must also estimate Jacobian
information for online training of the single neuron PID
controller. Jacobian information is determined as follows:

dy(k) _ 00
ou(k)  ou
4 00; (=2)[0;(k) — my]
= Wi' . 2 * 2 (33)
zq: ' {s 9045 (Uij)

3. Simulation and Results Simulation
Parameters

Table 1. Delta robot specifications

Value Unit
Symbol

0.3 m
Ly

0.8 m
L,

0.26 m
R

0.04 m
Tr

0 rad/s
ay

2m rad/s
a, 3
i rad/s

as 3

0.42 kg
m,

0.2 kg
my

0.75 kg
my,

Simulation Results
The desired trajectory of Delta robot as follow:
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Trajectory tracking of traditional PID and single neural PID controller
T T T

— — = Desired trajectory
x, = 0.17 sin(2mt) + 0.3 - W |
vq = 0.17 sin(2mt) + 0.2 (34) k
Zg = —-0.7 0.4
y Response of theta (rad/s)
- T T 0.35
= = = -thetal
08— theta1-PID
= Us/ thetal-NNPID _
g E osf J
o DA >
02
ol ‘ ‘ ‘ ‘ i ) |

- = —-theta2 02
theta2-PID
thata2-NNPID

0, (radis)

o 015

T
- = = -theta3,

theta3-PID
thetad-NNPID

ft3 (rad/s)

Figure 4. Compare the trajectory tracking between
PID and Single neuron PID

Time (<) Table 2. System comparison
Figure 2. Compare the response of thetha between Indicators PID Neuron PID
PID and Single neuron PID Settling time 0.4 £ 0.001 (s) | 0.3 £ 0.001 (5)
Overshoot 1.61% 0.7%
" . Rising time 1.965 (s) 1.933 (s)

—emori-PID
emor1-NNPID

error #, (rad)

‘ ‘ ‘ . 4. Conclusion

0 2 4 6 8 10 12

——emarn This study employed single-neuron PID controllers
combined with RFNN-based identifiers to control a 3-DOF
delta robot, which is a nonlinear MIMO system. Each arm
e ‘ ‘ : : of the robot was regulated by its own single-neuron PID
controller, trained online using Jacobian information
ooos sz | | provided by the corresponding RFNN identifier.
Simulation results confirm that both the controllers and
identifiers can be updated in real time during operation, and
. - . < the system achieves better performance than conventional
Tine £} PID control (Table 1IV). The proposed method
demonstrates stable behavior and fast response in
simulation. Future work will involve implementing and

Figure 3. Compare the error of thetha between PID testing the controllers on an actual delta robot.

and Single neuron PID

eror o, (rad)

eror 4, (rad)
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