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Abstract 

This study presents an adaptive control method for a 3-degree-of-freedom parallel Delta robot using a neuron PID controller 
combined with a recurrent fuzzy neural network (RFNN) identifier. Due to the nonlinear kinematics and dynamics, coupling, 
and load changes of the Delta robot, traditional PID controllers often do not ensure optimal control quality, thereby requiring 
adaptive intelligent control techniques [1], [2]. In the proposed model, the PID is represented as a linear neuron capable of 
self-updating the parameters Kp, Ki, Kdd based on the Jacobian information estimated online by the RFNN identifier, 
inheriting the backpropagation learning principle in the recurrent neuro-fuzzy system [3]. MATLAB simulation results show 
that the response time is improved, the steady-state error is eliminated, and the system maintains its stability when the load 
changes, which is consistent with previous studies on neural network-based adaptive PID for nonlinear systems [4]–[6]. This 
method contributes to affirming the effectiveness of combining PID neuron and RFNN for precise control of parallel robots. 

1. Introduction

Parallel robots are one of the topics that have been
developing rapidly in recent years. With flexible structures 
and advantages in speed, force and accuracy, delta robots 
have become popular and widely used in industry [11]. One 
of the studies is to use PD and LQR controllers to compare 
their effectiveness in tracking the trajectory [5][6][9]. In 
addition, in controlling delta robots, many research groups 
use non-linear PID controllers to help robots eliminate 
noise and have better performance [4][5][7][8][9]. Not 
only that, the technique of using self-tuning controllers in 
PID helps robots to self-correct errors during operation, but 
in return, this is one of the most difficult techniques in 
control [1-10]. PID controllers have been successfully 
developed for robots from 2-6 DOF, however, PID 
controllers are often effective with fixed input parameters. 
Continuously changing parameters such as load, external 
conditions, etc., the PID controller does not achieve the 
desired performance. Therefore, neural networks and fuzzy 

logic are applied to improve the control of Delta robots [1-
4] [7-8][10]. RFNN controllers and identifiers have been
developed and applied to non-linear systems. During the
control process, the RFNN identifier can estimate the
sensitivity of the object, which is called Jacobian
information. This information is used to train the RFNN
controller online. Therefore, by using RFNN, the control
technique can flexibly adjust the online parameters to suit
the control conditions.

Unlike conventional single-neuron PID controllers whose 
parameter adaptation relies solely on tracking error signals, 
the proposed approach integrates a recurrent fuzzy neural 
network (RFNN) identifier to estimate the system Jacobian 
online. This Jacobian information reflects the real-time 
sensitivity of the Delta robot dynamics and is incorporated 
into the learning rule of the single-neuron PID controller. 

As a result, the controller can adapt not only to tracking 
errors but also to variations in nonlinear dynamics, 
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coupling effects, and payload changes, which are typical 
challenges in high-speed Delta robot applications. 
Furthermore, the proposed controller is implemented as a 
coordinated MIMO structure, where each robot arm is 
regulated by its own neuron PID trained by a corresponding 
RFNN identifier, making it suitable for strongly nonlinear 
parallel manipulators. 

2. The Proposed Approach

2.1. The model of Delta robot 

In this study, the Delta robot model is established based on 
commonly adopted simplifying assumptions in the 
literature [7]–[9]. The links BiDi are represented by two 
lumped mass points located at Bi and Di, connected by 
rigid and weightless bars. 

These assumptions significantly reduce model complexity 
while maintaining sufficient accuracy for control design 
and performance evaluation. Although the inertia of the 
links and vibration effects may introduce minor dynamic 
discrepancies during high-speed motion, such modeling 
errors are compensated by the adaptive learning capability 
of the proposed neuron PID controller combined with the 
RFNN identifier. Therefore, the simplified model remains 
suitable for validating the effectiveness of the adaptive 
control strategy. 

Figure 1. Robot delta Urus [9] 

The set of robot includes: 

𝑞𝑞 = �𝜃𝜃1𝜃𝜃2𝜃𝜃3𝑥𝑥𝑝𝑝𝑦𝑦𝑝𝑝𝑧𝑧𝑝𝑝� (1) 

2.2. Establishing the linking equation 

 According to Figure 1, we determine the linking 
equation for point B1 and D1: 

𝑙𝑙2 − �𝑟𝑟𝐷𝐷1 − 𝑟𝑟𝐵𝐵1�
𝑇𝑇�𝑟𝑟𝐷𝐷1 − 𝑟𝑟𝐵𝐵1� = 0 (2) 

Where: 
𝑟𝑟𝐵𝐵1: Position of vector OB1 in the Oxyz coordinate. 
𝑟𝑟𝐷𝐷1: Position of vector OD1 in the Oxyz coordinate. 

The vector equation 𝑟𝑟𝐵𝐵1in Ox1y1z1 coordinate: 
𝑟𝑟𝐵𝐵1 = 𝑟𝑟𝐴𝐴1 + 𝑈𝑈𝐴𝐴1𝐵𝐵1 = [𝑅𝑅 + 𝑙𝑙1 cos 𝜃𝜃1 0 −𝑙𝑙1 sin 𝜃𝜃1]𝑇𝑇 (3)
Where: 
𝑟𝑟𝐴𝐴1 = [𝑅𝑅 0 0]𝑇𝑇 
𝑈𝑈𝐴𝐴1𝐵𝐵1 = [𝑙𝑙1 cos 𝜃𝜃1 0 −𝑙𝑙1 sin 𝜃𝜃1] 𝑇𝑇

We determine the z - rotation matrix: 

𝐴𝐴𝑧𝑧,𝛼𝛼1 = �
cos 𝛼𝛼1 − sin 𝛼𝛼1 0
sin 𝛼𝛼1 cos 𝛼𝛼1 0

0 0 1
� (4) 

Thus, we determine the 𝑟𝑟𝐵𝐵1in Oxyz coordinate: 

𝑟𝑟𝐵𝐵1 = �
cos 𝛼𝛼1 − sin 𝛼𝛼1 0
sin 𝛼𝛼1 cos 𝛼𝛼1 0

0 0 1
� �
𝑅𝑅 + 𝑙𝑙1 cos 𝜃𝜃1

0
−𝑙𝑙1 sin 𝜃𝜃1

�

=  �
𝑅𝑅 cos 𝛼𝛼1 + 𝑙𝑙1 cos 𝛼𝛼1 cos 𝜃𝜃1
𝑅𝑅 sin 𝛼𝛼1 + 𝑙𝑙1 sin 𝛼𝛼1 cos 𝜃𝜃1

−𝑙𝑙1 sin 𝜃𝜃1
�

(5) 

The 𝑟𝑟𝐷𝐷1in Oxyz coordinate: 

𝑟𝑟𝐷𝐷1 = 𝑟𝑟𝑃𝑃 + 𝑈𝑈𝑃𝑃𝑈𝑈1 = �
𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
𝑧𝑧𝑝𝑝
� + �

cos 𝛼𝛼1 − sin 𝛼𝛼1 0
sin 𝛼𝛼1 cos 𝛼𝛼1 0

0 0 1
� �
𝑟𝑟
0
0
�

=  �
𝑥𝑥𝑝𝑝 + 𝑟𝑟 cos𝛼𝛼1
𝑦𝑦𝑝𝑝 + 𝑟𝑟 sin 𝛼𝛼1

𝑧𝑧𝑝𝑝
�

(6) 

Combine the (6) and (5), we have: 

𝑟𝑟𝐷𝐷1 − 𝑟𝑟𝐵𝐵1 = �
(𝑅𝑅 − 𝑟𝑟) cos 𝛼𝛼1 + 𝑙𝑙1 cos 𝛼𝛼1 cos 𝜃𝜃1 − 𝑥𝑥𝑝𝑝
(𝑅𝑅 − 𝑟𝑟) sin 𝛼𝛼1 + 𝑙𝑙1 sin 𝛼𝛼1 cos 𝜃𝜃1 − 𝑦𝑦𝑝𝑝

−𝑙𝑙1 sin 𝜃𝜃1 − 𝑧𝑧𝑝𝑝
� (7) 

Substituting the (7) into (2), we get the equation for first 
link. Similar to second and third links, we get the link 
equation as follows: 

𝑓𝑓1 = 𝑙𝑙22 − �(𝑅𝑅 − 𝑟𝑟) cos 𝛼𝛼1 + 𝑙𝑙1 cos 𝛼𝛼1 cos 𝜃𝜃1 − 𝑥𝑥𝑝𝑝�
2

− �(𝑅𝑅 − 𝑟𝑟) sin 𝛼𝛼1 + 𝑙𝑙1 sin 𝛼𝛼1 cos 𝜃𝜃1
− 𝑦𝑦𝑝𝑝�

2−�𝑙𝑙1 sin 𝜃𝜃1 + 𝑧𝑧𝑝𝑝�
2 = 0

𝑓𝑓2 = 𝑙𝑙22 − �(𝑅𝑅 − 𝑟𝑟) cos 𝛼𝛼2 + 𝑙𝑙1 cos 𝛼𝛼2 cos 𝜃𝜃2 − 𝑥𝑥𝑝𝑝�
2

− �(𝑅𝑅 − 𝑟𝑟) sin 𝛼𝛼2 + 𝑙𝑙1 sin 𝛼𝛼2 cos 𝜃𝜃2
− 𝑦𝑦𝑝𝑝�

2−�𝑙𝑙1 sin 𝜃𝜃2 + 𝑧𝑧𝑝𝑝�
2 = 0

𝑓𝑓3 = 𝑙𝑙22 − �(𝑅𝑅 − 𝑟𝑟) cos 𝛼𝛼3 + 𝑙𝑙1 cos 𝛼𝛼3 cos 𝜃𝜃3 − 𝑥𝑥𝑝𝑝�
2

− �(𝑅𝑅 − 𝑟𝑟) sin 𝛼𝛼3 + 𝑙𝑙1 sin 𝛼𝛼3 cos 𝜃𝜃3
− 𝑦𝑦𝑝𝑝�

2−�𝑙𝑙1 sin 𝜃𝜃3 + 𝑧𝑧𝑝𝑝�
2 = 0

2.3. The kinetic and potential energy of Delta 
robot 

The kinetic energy of robot include the kinetic energy of 
AiBi stages, kinetic energy of mass mb is set as B1 and 
kinetic energy of moving table and mb masses: 
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𝑇𝑇 =
1
2
�𝐼𝐼1𝑦𝑦 + 𝑚𝑚𝑏𝑏𝑙𝑙12� �𝜃𝜃1

2̇ + 𝜃𝜃22̇ + 𝜃𝜃32̇ �

+
1
2
�𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏��𝑥𝑥𝑃𝑃2̇ + 𝑦𝑦𝑃𝑃2̇ + 𝑧𝑧𝑃𝑃2̇ � (9) 

The potential energy of robot: 

𝜋𝜋 = −𝑔𝑔𝑙𝑙1 �
1
2
𝑚𝑚1 + 𝑚𝑚𝑏𝑏� (sin 𝜃𝜃1 + sin 𝜃𝜃2 + sin 𝜃𝜃3) 

−𝑔𝑔�𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏�𝑧𝑧𝑃𝑃 (10) 

2.4. Establish the motion differential 
equations for the Delta robot. 

We use Lagrange factor to establish the motion 
differential equation with the following form: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑘̇𝑘

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑘𝑘

= 𝑄𝑄𝑘𝑘 −�𝜆𝜆𝑖𝑖
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑞𝑞𝑘𝑘

𝑟𝑟

𝑖𝑖=1

, (𝑘𝑘 = 1, 2, … ,𝑚𝑚)(11) 

Where  
𝑞𝑞𝑘𝑘: is the extrapolation coordinates of the robot 
𝑓𝑓𝑖𝑖: Linking equation 
𝑄𝑄𝑘𝑘: Extrapolation force 

Substituting the kinetic and potential energy into (11), 
we have the motion equations of delta robot: 

(𝐼𝐼𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑏𝑏𝑙𝑙12
 )𝜃𝜃1̈ =  𝑔𝑔𝑔𝑔1(

1
2
𝑚𝑚1 + 𝑚𝑚𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 + 𝜏𝜏1 

− 2𝜆𝜆1𝑙𝑙1 �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1(𝑅𝑅 − 𝑟𝑟) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1𝓍𝓍𝑝𝑝
− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼1𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1𝑦𝑦𝑝𝑝 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1𝑧𝑧𝑝𝑝

� (12) 

(𝐼𝐼𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑏𝑏𝑙𝑙12
 )𝜃𝜃2̈ =  𝑔𝑔𝑔𝑔1(

1
2
𝑚𝑚1 + 𝑚𝑚𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 + 𝜏𝜏2 

−2𝜆𝜆1𝑙𝑙1 �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2(𝑅𝑅 − 𝑟𝑟) − 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2𝓍𝓍𝑝𝑝
− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2𝑦𝑦𝑝𝑝 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2𝑧𝑧𝑝𝑝

� (13) 

(𝐼𝐼𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑏𝑏𝑙𝑙12
 )𝜃𝜃3̈ =  𝑔𝑔𝑔𝑔1(

1
2
𝑚𝑚1 + 𝑚𝑚𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3 + 𝜏𝜏3 

− 2𝜆𝜆3𝑙𝑙1 �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3(𝑅𝑅 − 𝑟𝑟) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝓍𝓍𝑝𝑝
− 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼3𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃3𝑦𝑦𝑝𝑝 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3𝑧𝑧𝑝𝑝

� (14) 

(𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏)𝓍𝓍𝑝̈𝑝 =  −2𝜆𝜆1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1(𝑅𝑅 − 𝑟𝑟)
+ 𝑙𝑙1𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 − 𝓍𝓍𝑝𝑝)

− 2𝜆𝜆2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2(𝑅𝑅 − 𝑟𝑟) + 𝑙𝑙1𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 − 𝓍𝓍𝑝𝑝)
− 2𝜆𝜆2�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3(𝑅𝑅 − 𝑟𝑟) + 𝑙𝑙1𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼3𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3 − 𝓍𝓍𝑝𝑝� (15)

(𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏)𝑦𝑦𝑝̈𝑝 =  −2𝜆𝜆1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1(𝑅𝑅 − 𝑟𝑟) + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼1𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
− 𝑦𝑦𝑝𝑝)

− 2𝜆𝜆2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2(𝑅𝑅 − 𝑟𝑟) + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 − 𝑦𝑦𝑝𝑝)
− 2𝜆𝜆2�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3(𝑅𝑅 − 𝑟𝑟) + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃3 − 𝑦𝑦𝑝𝑝� (16)

(𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏)𝑧𝑧𝑝̈𝑝 =  −(𝑚𝑚𝑝𝑝 + 3𝑚𝑚𝑏𝑏)𝑔𝑔 + 2𝜆𝜆1(𝑧𝑧𝑝𝑝 + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1)
+ 2𝜆𝜆2(𝑧𝑧𝑝𝑝 + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2)
+2𝜆𝜆3�𝑧𝑧𝑝𝑝 + 𝑙𝑙1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3� (17) 

2.5. Designing the Single Neuron PID 

Single Neuron PID is an adaptive PID controller, in 
which the parameters Kp, Ki, Kd are considered as the 
weights of a neuron and are automatically adjusted 
according to the learning rule to optimize the error. 

Controller structure 
With 3 inputs: Kp, Ki, Kd, the PID controller set as: 
𝑢𝑢(𝑘𝑘) = 𝑢𝑢(𝑘𝑘 − 1) + 𝐾𝐾𝑝𝑝𝛥𝛥𝛥𝛥1 + 𝐾𝐾𝑖𝑖𝛥𝛥𝛥𝛥2 + 𝐾𝐾𝑑𝑑𝛥𝛥𝛥𝛥3 (18) 

Where: 
𝛥𝛥𝛥𝛥1 = 𝑒𝑒(𝑘𝑘) 

𝛥𝛥𝛥𝛥2 =  � 𝑒𝑒(𝑘𝑘)𝑑𝑑𝑑𝑑
∞

0
 

𝛥𝛥𝛥𝛥3 =  
𝑑𝑑𝑑𝑑(𝑘𝑘)
𝑑𝑑𝑑𝑑

Controller training 
The goal of training the single neuron PID controller is 

to adjust the network's weight set w1i (i=1,2,3) to minimize 
the cost function 

𝐸𝐸(𝑘𝑘) =
1
2
𝑒𝑒2(𝑘𝑘) =

1
2

[𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) − 𝑦𝑦(𝑘𝑘)]2 (19) 

Where: 
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘): The reference signal 
𝑦𝑦(𝑘𝑘): System response 

To adjust the weight set w1i (i=1,2,3), the gradient 
descent method was applied 

𝐾𝐾𝑝𝑝 = 𝑤𝑤11(𝑘𝑘 + 1) =  𝑤𝑤11(𝑘𝑘) + 𝛥𝛥𝑤𝑤11(𝑘𝑘) (20) 
𝐾𝐾𝑖𝑖 = 𝑤𝑤12(𝑘𝑘 + 1) =  𝑤𝑤12(𝑘𝑘) + 𝛥𝛥𝑤𝑤12(𝑘𝑘) (21) 
𝐾𝐾𝑑𝑑 = 𝑤𝑤13(𝑘𝑘 + 1) =  𝑤𝑤13(𝑘𝑘) + 𝛥𝛥𝑤𝑤13(𝑘𝑘) (22) 

Where 𝛥𝛥𝑤𝑤11(𝑘𝑘), 𝛥𝛥𝑤𝑤12(𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎 𝛥𝛥𝑤𝑤13(𝑘𝑘) are 
considered by: 

𝛥𝛥𝑤𝑤11(𝑘𝑘) = 𝜂𝜂𝐾𝐾𝑝𝑝 �−
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑤𝑤11(𝑘𝑘)�

= −𝜂𝜂𝐾𝐾𝑝𝑝𝑒𝑒(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘) 𝛥𝛥𝛥𝛥1 (23) 

𝛥𝛥𝑤𝑤12(𝑘𝑘) = 𝜂𝜂𝐾𝐾𝑖𝑖 �−
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑤𝑤12(𝑘𝑘)�

= −𝜂𝜂𝐾𝐾𝑖𝑖𝑒𝑒(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘) 𝛥𝛥𝛥𝛥2 (24) 

𝛥𝛥𝑤𝑤13(𝑘𝑘) = 𝜂𝜂𝐾𝐾𝑑𝑑 �−
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑤𝑤13(𝑘𝑘)�

= −𝜂𝜂𝐾𝐾𝑑𝑑𝑒𝑒(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘) 𝛥𝛥𝛥𝛥3 (24) 

Where: 
𝜂𝜂𝐾𝐾𝑝𝑝, 𝜂𝜂𝐾𝐾𝑖𝑖, 𝜂𝜂𝐾𝐾𝑑𝑑 are learning rate constant. 
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘)

: is the respone sensitivity, which is the Jacobian
information. 

2.6. Designing the RFNN Identifier 
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RFNN Identifier structure 
The RFNN identifier has 4 layers, with an input layer 

of 2 nodes, a fuzzy layer of 10 nodes, a fuzzy rule class of 
25 nodes, and an output layer with 1 node. 
Layer 1: Input consists of 2 nodes that convey the input 
values to the next layer. 

𝑂𝑂𝑖𝑖1(𝑘𝑘) = 𝑥𝑥𝑖𝑖1(𝑘𝑘) + 𝜃𝜃𝑖𝑖1(𝑘𝑘)𝑂𝑂𝑖𝑖𝑘𝑘(𝑘𝑘 − 1), (𝑖𝑖 = 1,2) (25) 
Where: 
𝜃𝜃𝑖𝑖1: connection weight at current k. 
𝑥𝑥11(𝑘𝑘) = 𝑢𝑢(𝑘𝑘): The current control signal. 
𝑥𝑥21(𝑘𝑘) = 𝑦𝑦(𝑘𝑘 − 1): The past output of response 

Layer 2: Fuzzy layer: This layer consists of (2x5) 
nodes, each node representing a related function of the 
Gaussian form with mean value mij and standard deviation 
σij 

𝑂𝑂𝑖𝑖𝑖𝑖2 (𝑘𝑘) = exp �−
�𝑂𝑂𝑖𝑖1(𝑘𝑘) − 𝑚𝑚𝑖𝑖𝑖𝑖�

2

𝜎𝜎𝑖𝑖𝑖𝑖
� , (𝑖𝑖 = 1,2; 𝑗𝑗 = 1,2, … ,5)(26) 

Layer 3: Law layer: this layer consists of (5x5) nodes. 
The output of the q node in this class is determined as 
follows: 

𝑂𝑂𝑞𝑞3(𝑘𝑘) = �𝑂𝑂𝑖𝑖𝑞𝑞𝑖𝑖
2 (𝑘𝑘)

𝑖𝑖

, (𝑖𝑖 = 1,2, … ,5; 𝑞𝑞𝑖𝑖 = 1,2, … ,5) (27) 

Layer 4: Output layer: This layer includes 1 linear 
neuron with the defined output as follows: 

𝑂𝑂𝑖𝑖4(𝑘𝑘) = �𝑤𝑤𝑖𝑖𝑖𝑖4𝑂𝑂𝑗𝑗3(𝑘𝑘),
𝑗𝑗

 (𝑖𝑖 = 1, 𝑗𝑗 = 1,2, … ,25) (28) 

RFNN Identifier training 
The goal of an online training algorithm for RFNN 

identifier is to adjust the weighting sets of the network and 
the parameters of the fuzzy class dependent functions to 
achieve the minimum value of cost function 

𝐸𝐸(𝑘𝑘) =
1
2

[𝑦𝑦(𝑘𝑘) − 𝑦𝑦𝑚𝑚(𝑘𝑘)]2 

=
1
2

[𝑦𝑦(𝑘𝑘) − 𝑂𝑂14(𝑘𝑘)]2 (29) 

The weight of each RFNN network layer is updated as 
follows: 

𝑤𝑤𝑖𝑖𝑖𝑖4 (𝑘𝑘 + 1) = 𝑚𝑚𝑖𝑖𝑖𝑖(𝑘𝑘) +

𝜂𝜂𝑚𝑚�𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖𝑖𝑖4

𝑘𝑘

𝑂𝑂𝑘𝑘3
2�𝑂𝑂𝑖𝑖𝑖𝑖1 (𝑘𝑘) − 𝑚𝑚𝑖𝑖𝑖𝑖�

�𝜎𝜎𝑖𝑖𝑖𝑖�
2 (30)

𝜎𝜎𝑖𝑖𝑖𝑖(𝑘𝑘 + 1) = 𝜎𝜎𝑖𝑖𝑖𝑖(𝑘𝑘) +

𝜂𝜂𝜎𝜎�𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖𝑖𝑖4

𝑘𝑘

𝑂𝑂𝑘𝑘3
2�𝑂𝑂𝑖𝑖𝑖𝑖1 (𝑘𝑘) − 𝑚𝑚𝑖𝑖𝑖𝑖�

2

�𝜎𝜎𝑖𝑖𝑖𝑖�
3 (31)

𝜃𝜃𝑖𝑖1(𝑘𝑘 + 1) = 𝜃𝜃𝑖𝑖1(𝑘𝑘) +

𝜂𝜂𝜃𝜃�𝑒𝑒(𝑘𝑘)𝑤𝑤𝑖𝑖𝑖𝑖4

𝑘𝑘

𝑂𝑂𝑘𝑘3
(−2)�𝑂𝑂𝑖𝑖𝑖𝑖1 (𝑘𝑘) − 𝑚𝑚𝑖𝑖𝑖𝑖�𝑂𝑂𝑖𝑖𝑖𝑖1 (𝑘𝑘 − 1)

�𝜎𝜎𝑖𝑖𝑖𝑖�
2 (32) 

The RFNN identifier must also estimate Jacobian 
information for online training of the single neuron PID 
controller. Jacobian information is determined as follows: 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘) =

𝜕𝜕𝑂𝑂14

𝜕𝜕𝑢𝑢

= �𝑤𝑤𝑖𝑖𝑖𝑖4 ⋅ ��
𝜕𝜕𝑂𝑂13

𝜕𝜕𝑂𝑂𝑞𝑞𝑞𝑞2𝑠𝑠

⋅
(−2)�𝑂𝑂𝑖𝑖𝑖𝑖1 (𝑘𝑘) − 𝑚𝑚𝑖𝑖𝑖𝑖�

�𝜎𝜎𝑖𝑖𝑖𝑖�
2 �

𝑞𝑞

(33)

3. Simulation and Results Simulation 
Parameters

Table 1. Delta robot specifications 

Symbol 
Value Unit 

𝑳𝑳𝟏𝟏 
0.3 m 

𝑳𝑳𝟐𝟐 
0.8 m 

𝑹𝑹 
0.26 m 

𝒓𝒓 
0.04 m 

𝜶𝜶𝟏𝟏 
0 rad/s 

𝜶𝜶𝟐𝟐 

𝟐𝟐𝟐𝟐
𝟑𝟑

rad/s 

𝜶𝜶𝟑𝟑 

𝟒𝟒𝟒𝟒
𝟑𝟑

rad/s 

𝒎𝒎𝒍𝒍 
0.42 kg 

𝒎𝒎𝒃𝒃 
0.2 kg 

𝒎𝒎𝒑𝒑 
0.75 kg 

Simulation Results 
The desired trajectory of Delta robot as follow: 
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𝑥𝑥𝑑𝑑 = 0.17 sin(2𝜋𝜋𝜋𝜋) + 0.3
𝑦𝑦𝑑𝑑 = 0.17 sin(2𝜋𝜋𝜋𝜋) + 0.2

𝑧𝑧𝑑𝑑 = −0.7
(34) 

Figure 2. Compare the response of thetha between 
PID and Single neuron PID 

Figure 3. Compare the error of thetha between PID 
and Single neuron PID 

Figure 4. Compare the trajectory tracking between 
PID and Single neuron PID 

Table 2. System comparison 

Indicators PID Neuron PID 
Settling time 0.4 ± 0.001 (s) 0.3 ± 0.001 (s) 
Overshoot 1.61% 0.7% 
Rising time 1.965 (s) 1.933 (s) 

4. Conclusion

This study employed single-neuron PID controllers
combined with RFNN-based identifiers to control a 3-DOF 
delta robot, which is a nonlinear MIMO system. Each arm 
of the robot was regulated by its own single-neuron PID 
controller, trained online using Jacobian information 
provided by the corresponding RFNN identifier. 
Simulation results confirm that both the controllers and 
identifiers can be updated in real time during operation, and 
the system achieves better performance than conventional 
PID control (Table IV). The proposed method 
demonstrates stable behavior and fast response in 
simulation. Future work will involve implementing and 
testing the controllers on an actual delta robot. 
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