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Abstract 
This study addresses the stabilization of the Cart Inverted Pendulum (CIP), a system widely recognized as a foundational 
challenge in control theory because of its unstable, nonlinear, and under controlled properties. Achieving stability in the CIP is 
essential for developing control methods for modern applications like robotics. This paper implements the Pole Placement 
method to ensure the system remains stable. The method begins by linearizing the nonlinear system dynamics about the unstable 
vertical configuration and expressing them in a state-variable form. After confirming the system's controllability, a state-
feedback controller is designed by strategically assigning closed-loop pole locations. This placement dictates the system's 
performance, allowing for specific targets for damping and setting time. The controller's effectiveness is demonstrated through 
numerical simulations in MATLAB/Simulink, which confirm the system's successful transition from instability to stable, 
regulated control of both the angle of pendulum and the position of cart. This analysis also illuminates the essential trade-off 
between the system's response speed and the required energy control. The work ultimately affirms that Pole Placement is a 
highly effective, understandable, and computationally practical technique for stabilizing complex underactuated systems. 
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1. Introduction

The CIP system stands as a canonical benchmark 
problem for validating such control strategies. Moreover, 
the CIP system has numerous practical applications 
including self-balancing vehicles such as Segways, robotic 
manipulators, and aerial drones all share dynamic 
characteristics with the CIP. As a typical example of an 
underactuated, unstable, and nonlinear system, it perfectly 
describes the core challenges of modern control 
engineering. Implementing pole placement control for the 
CIP system begins with verifying the controllability of the 
linearized model. If the system is controllable, one can 
select desired pole locations based on performance criteria, 
such as a fast but stable response, minimal overshoot, and 
limited control effort. The feedback gain matrix is 
computed accordingly, ensuring that the closed-loop poles 
match the predefined specifications. One significant  

advantage of this method is its flexibility: designers can 
easily adjust pole locations to tune the transient response 
without re-deriving the control law from first principles 
[16]. Additionally, Numerical simulation plays a crucial 
role in validating the pole placement design. Simulation 
software such as MATLAB/Simulink are typically used to 
model the nonlinear CIP dynamics and simulate the 
system’s behaviors under various control configurations 
[17]. Through simulation, one can compare the system’s 
open-loop instability with its closed-loop stability after 
pole placement. Generally, demonstrate that as the poles 
are placed farther left in the complex plane, the system 
responds faster but with increased overshoot and control 
effort. Therefore, a trade-off exists between stability 
margins, speed of response, and energy efficiency. The 
pole placement method allows fine-tuning of these trade-
offs, leading to improved overall system performance 
when properly designed [18].  
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This paper focuses on stabilizing a cart inverted pendulum 
(CIP) by first linearizing its model and then designing a 
pole placement controller. The success of this stabilization 
approach is demonstrated through MATLAB-based 
simulations. 

2. Literature review

The CIP system serves as a basic test case in control 
engineering because whose independent coordinates 
outnumber its actuation channels, behaves in a nonlinear 
way and is naturally unstable. On that account researchers 
have created many control schemes to keep it upright, from 
traditional linear methods to recent data-based methods. 
This section surveys those schemes to explain why the 
present work chose Pole Placement. 

Linear control methods stay popular because they run fast 
and their stability is proven. Many papers compare Linear 
Quadratic Regulators (LQR) plus Linear Quadratic 
Gaussian (LQG) with ordinary PID controllers. Tests show 
that LQG gives quick response and stays stable - yet LQR 
usually works better when noise is present [19]. Extended 
LQG but also similar variants serve in situations with few 
sensors, but they need nonlinear models of higher order, 
which raises complexity [20]. Among linear techniques, 
Pole Placement through state feedback is direct - the 
designer fixes the closed loop pole positions to obtain the 
wanted damping and settling time [25]. The drawback is 
that the chosen poles fix the required control energy - a 
clear trade off study is essential [25]. 

Advanced model-based approaches, such as Sliding Mode 
Control (SMC) and Model Predictive Control (MPC), have 
been extensively studied to overcome the drawbacks of 
linear approximations. The ability of MPC to manage 
system restrictions and trajectory tracking is particularly 
well known. Comparative studies between real-time MPC 
and LQR on rotary pendulums demonstrate that, although 
MPC handles constraints better, it struggles with sampling 
noise and severe computational demands on embedded 
hardware [21]. Integrating model refinement procedures to 
increase prediction accuracy is one way that MPC is being 
improved [27]. In a similar vein, strong control techniques 
like worst-case optimization and Bayesian control have 
been put out as a means of dealing with sensor uncertainty 
and perturbations [23] [28]. Additionally, hierarchical 
sliding mode control (HSMC) coupled with optimization 
methods has been demonstrated to lessen the "chattering" 
effect frequently seen in robust control, resulting in 
superior performance when compared to standard SMC or 
LQR [22] [33]. 

The use of Reinforcement Learning (RL) and Machine 
Learning (ML) in the CIP system is a quickly expanding 
trend in contemporary literature. These techniques seek to 
infer control rules straight from data. Reinforcement 
learning methods like Q-learning and Deep Q-Networks 
have shown the potential to swing up and stabilize 

pendulums, sometimes outperforming PID and LQR 
measures [29] [31]. To make use of big data for controller 
tuning, more complex frameworks combine RL with MPC 
[26], or they use "Sim-to-Real" transfer to close the gap 
between simulation and physical hardware [24]. But 
compared to traditional physics-based models, these 
techniques frequently have significant implementation 
complexity, instability during the training process, and a 
lack of transparency [32] [34]. 

Although sophisticated nonlinear and learning-based 
controllers can perform well in certain situations, they 
usually have high computational costs and are difficult to 
implement. On the other hand, the Pole Placement 
technique provides a straightforward and computationally 
efficient approach that is excellent for comprehending the 
system's underlying dynamics [12]. Even with the 
introduction of modern algorithms, Pole Placement is still 
a potent method for archiving a balance between response 
speed and energy efficiency. 

3. The proposed approach

3.1. System Modelling 

Fig.1. The cart inverted pendulum 

Fig 1 illustrates the cart inverted pendulum system. A 
DC motor is used to move the cart along x-axis direction. 
The mechanical transmission using belt and pulley is used 
to gain the actuator torque. The velocity and the 
acceleration of the cart are controlled by controlling the 
angular velocity and acceleration of the DC motor.[36] 

A. Mathematical Model of the CIP

A mathematical model of the cart inverted pendulum 
should be derived to map the system input (the force 
applied to cart, f) to the system output (𝑥𝑥, 𝜃𝜃). In  a 
mathematical notation, the mapping can be expressed 
as𝑓𝑓 ∈ ℝ 1 ↦ (𝑥𝑥, 𝜃𝜃) ∈ ℝ2. In thi s wor k, Lag range’s 
Equation is used to describe the system model. The basic 
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tenet of Lagrange’s equation is the description of the 
system by one of equalised coordinate 𝑞𝑞 =
{𝑞𝑞1,⋯  , 𝑞𝑞𝑖𝑖, ⋯  , 𝑞𝑞𝑛𝑛},  where 𝑛𝑛is the total assigned equalised 
coordinate. 𝑞𝑞𝑖𝑖is a free degree of freedom of true system 
which totally combine the constraints unique to that 
system, i.e., the communication among parts of the system. 
The Lagrangian equation ℒ is declared by the potential 
energy 𝑃𝑃and the kinetic energy 𝐾𝐾as explained as 

 (1) 
where q = [x, θ] is the vector of equalized coordinate and 
q. is the derivation of it, K is the total of the system’s 
kinetic energy and P is the system’s potential energy. In 
this inverted pendulum system, the kinetic energy is 
governed by two factors including the kinetic energy of the 
cart, KM, as well as the kinetic energy of the pendulum, 
Km, which are respectively presented: 

 
(2) 

 
(3) 

where M is the cart mass, x˙ is the cart’s linear velocity, m 
is the pendulum mass, x˙θ is the rate of the pendulum 
position following to the horizontal axis and h˙ is the rate 
of the pendulum position on the vertical axis. Based on Fig. 
1, the total kinetic energy of the system is derived 

 
(4) 

On the other hand, the potential energy is directly affected 
by the mass of the pendulum m, which is presented as 

 
(5) 

In general, the Eq. (1) can be rewritten with the 
subcomponents from Eq. (2) to Eq. (5) as follows: 

 
(6) 

In terms of x and θ, the derivatives of the Eq. (1) following 
to x and θ are respectively derived: 

 
(7) 

 
(8) 

 
Deriving for each term in the differential equation in Eq. 
(7) and Eq. (8), it can be obtained that 

 
(9) 

 
(10) 

 (11) 
 
and 

 
(12) 

 
(13) 

 (14) 
Substituting from Eq. (9) to Eq. (14) into Eq. (7) and Eq. 
(8), the dynamics model of the inverted pendulum system 
is declared as follows 

 (15) 

 (16) 
From Eq. (15) and Eq. (16), it is noted that the existence of 
those non-linear components sin(), cos(), θ˙2, leading to the 
nonlinearity of the inverted pendulum system. 
Assumption 1. To linearize the system, it is assumed that 
the pendulum rotates near around the equilibrium (θ≈0). As 
a result, it can be approximated that sin θ ≈ θ, cos θ ≈ 1, θ˙2 
≈ 0, 𝜃̇𝜃 and 𝜃̇𝜃θ = 0. 

B. DC Motor: Torque, Armature Voltage, and Angular 
Velocity of this model 

The DC motor armature circuit equation can be calculated 
using Kirchhoff's voltage law: 
 

 
(17) 

 

Fig. 2. DC Motor Armature Equivalent Circuit 

The relation between generated back electromotive force 
(emf), Vb, and the rotational speed of the rotor is: 

 
(18) 

where Kb is the back emf constant. 
The torque of motor τ1 is the output of the actuator that 
ultimately causes the force to move the cart. 

 (19) 
where Kt is the motor torque constant.  
 
The Eq. (20) is the expression of the DC motor armature 
circuit equation where the armature current and its 
derivative have been substituted by terms involving the 
motor torque and the motor angular velocity.  

 
(20) 

Ignoring the motor inductance, the function of armature 
circuit can be simplified as: 

 
(21) 
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The mechanical transmission ratio in the system can be 
calculated as: 

 
(22) 

where r is the radius of the pulley and N is the gear teeth 
number.  
 
The relation between the motor angular velocity and the 
cart velocity x˙ is  

 
(23) 

Eq. (24) connects the rotational output of the motor to 
the linear movement of the cart. This allows the preceding 
electrical model to be expressed entirely in terms of the 
cart's mechanical state variables. 

 
(24) 

Combining Eq. (24) and Eq. (21), the Eq. (25) can be 
obtained as: 

 
(25) 

The torque 𝜏𝜏2causing the force that moves the cart, so, the 
transform is needed 𝜏𝜏1 ↦ 𝜏𝜏2. Consequently, using 𝑓𝑓𝑟𝑟2 =
𝜏𝜏2(the force that perpendicular to the direction of 𝑟𝑟2from 
pulley centre), it can be verified that 

 
(26) 

where 𝐾𝐾𝑟𝑟 = 𝐾𝐾𝑡𝑡
𝑅𝑅𝑎𝑎

. From Eq. (36) and Eq. (25), a new 
Lagrange’s function in term of equalised coordinate 𝑥𝑥is 
declared as 

 
(27) 

 
The following notions are used to simplify the 

derivation. 

 
(28) 

 
(29) 

 
from Eq. (27), and from the term θ¨ and Eq. (16) into 

Eq. (27), the first differential equation can be described as 

 
(30) 

From Eq. (16), the angular acceleration can be obtained 
as: 

 
(31) 

From Eq. (30) and Eq. (31), the second differential 
function of the system can be formed as 

 
(32) 

 
(33) 

 Ultimately, the differential equations describing the 
cart-pendulum system were derived using Lagrange’s 

method, while explicitly incorporating actuator dynamics 
into the mathematical model. 

3.2. State Space Modelling 

For further analysis, the mathematical model of the 
system should be translated into the state space model. The 
general form of a system state space is shown in Fig. 3[36]. 

 

 

Fig. 3. Open Loop System Representation in State 
Space Equation 

State space representation equation can be expressed as 
 (35) 

 (36) 
where n is the total number of the state variables and x∈ 

ℝn is a state vector. x˙ is the time derivative of the state 
vector.[36] 
 A vector u ∈ ℝk is the control vector or control input which 
has k elements of control variables. The matrices A∈ ℝn x n, 
B∈ ℝn x k and C ∈ ℝp x n are named the system, the output 
and the input matrices, successively, where ppp is the 
output number.[36] The output vector is declared as y∈ ℝp 

For the case of the cart inverted pendulum system, the 
state vector, the derivative of the state vector and the input 
of the state vector are declared as x=[x  θ x˙ θ˙]T, x˙=[x˙  θ˙x¨ 
   θ¨]T,u=va,. In this case, the total number of the state 
variables is n=4. Arranging Eq. (40) and Eq. (43) into the 
state space form, the system matrices obtained as 
follows[36]: 

Only x and θ can be observed directly from sensors in 
assumption, in the sense that the observed value from the 
sensor is the actual value. In practical, the conversion from 
the actual to the value that is used for the computation is 
required.[36] 
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3.3. The Pole Placement Method 

The open–loop dynamics are determined by the 
characteristic polynomial of the matrix A: 

 (37) 
The coefficients ai correspond to the current locations of 
the system poles. 
A. Specify the desired closed-loop poles 

From the design requirements on transient response 
such as settling time, overshoot, and damping - we choose 
an appropriate set of desired closed-loop poles  μ1,…,μn. 
These poles define a new characteristic polynomial: 

 
(38) 

The coefficients αi are the target coefficients that the 
closed-loop characteristic polynomial should attain. 
B. Transform the system to controllable canonical form 

Assume that the pair (A, B) is controllable. Then there 
exists a change of state variables x=Tz such that the 
transformed pair (Ac, Bc) is in controllable canonical form. 
The transformation matrix T is constructed from the 
controllability matrix C= [B AB…An-1B] and an auxiliary 
companion-type matrix W derived from the coefficient ai: 

 (39) 

Using the matrix A and B, the controllability matrix can 
be calculated as 𝓒𝓒 = [B  AB  A2B  A3B]. Using the 
following parameters (M=1 kg, m=0.1 kg, l=0.25 m, 
r1=0.015 m, Ra=1 Ω, Kt=Kb=0.02),  

𝒞𝒞 = �

0 1.3333 −2.3704 9.407
0 −5.3333 9.4815 −246.8293

1.3333 −2.3704 9.4407 −26.0752
−5.3333 9.4815 −246.8293 475.9751

� 

 
Therefore, rank(𝓒𝓒) = 4, confirming that the linearized 

system is fully controllable. 
C. Compute the state-feedback gain matrix 

In the z-coordinates, with Ac in companion form, the 
feedback gain vector in controllable canonical form can be 
obtained directly from the difference between the desired 
coefficients α1 and the original coefficients ai. 
Transforming back to the original coordinates yields the 
state-feedback gain 

 (40) 
With the control law u=−Kx, the closed-loop matrix Acl 

= A−BK has the characteristic polynomial given by (35). 
In other words, all closed-loop poles are placed exactly at 
the prescribed locations μi chosen in A.[36] 

In tracking problems, a static input pre–compensator can 
be included so that 

u=Nr−Kx (41) 
where the scalar (or diagonal) gain N is selected to achieve 
the desired steady-state accuracy for a step reference. The 
overall state–feedback closed-loop structure with this pre–
gain is illustrated in Fig. 4. 

 
 

Fig. 4. Closed loop system with pre-gain 

4. Result and discussion 

To verify the effectiveness of the proposed control 
method, simulations have been performed in MATLAB. 
The parameters of the CIP system were determined as 
depicted in Table 1. 

Table 1. The CIP parameters. 

Parameters Value Unit 
Armature resistance 1 Ω 

Motor torque constant 0.02 𝑁𝑁𝑁𝑁/𝐴𝐴 
Back emf constant 0.02 𝑉𝑉𝑉𝑉/𝑟𝑟𝑟𝑟𝑟𝑟 

Motor pulley radius 0.015 𝑚𝑚 
Pendulum mass 0.1 𝑘𝑘𝑘𝑘 

Cart mass 1 𝑘𝑘𝑘𝑘 
Pendulum rod length 0.25 𝑚𝑚 

Gravitational acceleration 9.81 𝑚𝑚/𝑠𝑠2 

 
 

Fig. 5. Pendulum angle response 
 
Fig. 5 shows the open-loop angle θ(t) after a 

smalldisturbance from the upright position. The pendulum 
quickly tips over and its angle grows roughly exponentially 
until it hits mechanical limits, confirming that the 
linearized CIP has an unstable pole in the right-half plane. 
This baseline clearly illustrates that, without feedback, the 
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system cannot maintain balance and motivates the use of a 
pole-placement controller. 

Fig. 6 shows the corresponding cart motion x(t). As the 
pendulum falls, the reaction forces cause the cart to 
accelerate away from x(0) = 0, often moving more than 1 
m in a few seconds with a roughly parabolic trajectory. 
Thus, the controller must both balance the pendulum and 
bring the cart position back to its reference using only one 
control input. 

 

Fig. 6. Cart position response 

Fig. 6 shows the closed-loop pendulum angle when the 
state-feedback law u=−Kx (designed by pole placement) is 
applied. In contrast to the unstable open-loop case, the 
angle now returns smoothly to zero, with rise time about 
0.5 s, settling time around 1.5 s, and overshoot near 15%, 
all determined by the chosen pole locations. Selecting 
dominant poles with damping ratio ζ≈0.7 gives a good 
compromise between speed and oscillation, and the steady-
state error is practically zero. This plot visually confirms 
that shifting the system poles to the left-half plane via state 
feedback stabilizes the CIP and achieves pendulum 
balancing. 

Fig. 7 shows the closed-loop cart position, highlighting 
that the controller also achieves position regulation. Instead 
of drifting away as in the open-loop case, the cart first 
moves in one direction to help arrest the pendulum’s fall, 
then smoothly returns to x=0. Its settling time, typically 
around 3–4 s, is longer than that of the pendulum angle, 
reflecting the energy exchange and the compromise of 
controlling both states with a single actuator. The 
negligible steady-state error confirms that the coupled 
dynamics are well handled. By shifting the poles linked to 
the cart dynamics further left the return to the origin could 
be made faster, though at the cost of higher control effort. 

 

Fig. 7. Pendulum angle response with gain. 

 
 

Fig. 8. Cart position response with gain. 

5. Conclusion 

This work addressed the stabilization problem of the 
underactuated and inherently unstable CIP system with the 
pole placement method. By linearizing the nonlinear 
dynamics around the upright equilibrium and verifying 
system controllability, a state-feedback controller was 
systematically designed through the selection of desired 
closed-loop pole locations. The resulting gain matrix 
successfully stabilized both the pendulum angle and cart 
position. Extensive MATLAB/Simulink simulations 
confirmed the controller’s effectiveness, demonstrated the 
tunability of transient performance via pole assignment, 
and highlighted the associated control-effort trade-offs. 

The study contributes: (i) a clear derivation of the 
linearized state-space model; (ii) a complete pole-
placement-based stabilization procedure; and (iii) 
numerical validation demonstrating reliable closed-loop 
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performance. Future work will focus on observer-based 
output feedback, robustness enhancement, hardware-in-
the-loop implementation, and extending the methodology 
to more complex underactuated systems. 
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