EAIl Endorsed Transactions

on Sustainable Manufacturing and Renewable Energy  Rescarch Article EALLEU

Stabilization of a Cart-Pendulum System Using the Pole
Placement Technique

Q.K.M. Bui!, H.N. Nguyen!, T.T. Duong"”

'Department of Mechatronics, Faculty of Mechanical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet, Dien Hong Ward, Ho Chi Minh City, Viet Nam

Abstract

This study addresses the stabilization of the Cart Inverted Pendulum (CIP), a system widely recognized as a foundational
challenge in control theory because of its unstable, nonlinear, and under controlled properties. Achieving stability in the CIP is
essential for developing control methods for modern applications like robotics. This paper implements the Pole Placement
method to ensure the system remains stable. The method begins by linearizing the nonlinear system dynamics about the unstable
vertical configuration and expressing them in a state-variable form. After confirming the system's controllability, a state-

feedback controller is designed by strategically assigning closed-loop pole locations. This placement dictates the system's
performance, allowing for specific targets for damping and setting time. The controller's effectiveness is demonstrated through
numerical simulations in MATLAB/Simulink, which confirm the system's successful transition from instability to stable,
regulated control of both the angle of pendulum and the position of cart. This analysis also illuminates the essential trade-off]
between the system's response speed and the required energy control. The work ultimately affirms that Pole Placement is a
highly effective, understandable, and computationally practical technique for stabilizing complex underactuated systems.
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1. Introduction advantage of this method is its flexibility: designers can
easily adjust pole locations to tune the transient response
without re-deriving the control law from first principles
[16]. Additionally, Numerical simulation plays a crucial
role in validating the pole placement design. Simulation
software such as MATLAB/Simulink are typically used to
model the nonlinear CIP dynamics and simulate the
system’s behaviors under various control configurations
[17]. Through simulation, one can compare the system’s
open-loop instability with its closed-loop stability after
pole placement. Generally, demonstrate that as the poles
are placed farther left in the complex plane, the system
responds faster but with increased overshoot and control
effort. Therefore, a trade-off exists between stability
margins, speed of response, and energy efficiency. The
pole placement method allows fine-tuning of these trade-
offs, leading to improved overall system performance
when properly designed [18].

The CIP system stands as a canonical benchmark
problem for validating such control strategies. Moreover,
the CIP system has numerous practical applications
including self-balancing vehicles such as Segways, robotic
manipulators, and aerial drones all share dynamic
characteristics with the CIP. As a typical example of an
underactuated, unstable, and nonlinear system, it perfectly
describes the core challenges of modern control
engineering. Implementing pole placement control for the
CIP system begins with verifying the controllability of the
linearized model. If the system is controllable, one can
select desired pole locations based on performance criteria,
such as a fast but stable response, minimal overshoot, and
limited control effort. The feedback gain matrix is
computed accordingly, ensuring that the closed-loop poles
match the predefined specifications. One significant
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This paper focuses on stabilizing a cart inverted pendulum
(CIP) by first linearizing its model and then designing a
pole placement controller. The success of this stabilization
approach is demonstrated through MATLAB-based
simulations.

2. Literature review

The CIP system serves as a basic test case in control
engineering because whose independent coordinates
outnumber its actuation channels, behaves in a nonlinear
way and is naturally unstable. On that account researchers
have created many control schemes to keep it upright, from
traditional linear methods to recent data-based methods.
This section surveys those schemes to explain why the
present work chose Pole Placement.

Linear control methods stay popular because they run fast
and their stability is proven. Many papers compare Linear
Quadratic Regulators (LQR) plus Linear Quadratic
Gaussian (LQG) with ordinary PID controllers. Tests show
that LQG gives quick response and stays stable - yet LQR
usually works better when noise is present [19]. Extended
LQG but also similar variants serve in situations with few
sensors, but they need nonlinear models of higher order,
which raises complexity [20]. Among linear techniques,
Pole Placement through state feedback is direct - the
designer fixes the closed loop pole positions to obtain the
wanted damping and settling time [25]. The drawback is
that the chosen poles fix the required control energy - a
clear trade off study is essential [25].

Advanced model-based approaches, such as Sliding Mode
Control (SMC) and Model Predictive Control (MPC), have
been extensively studied to overcome the drawbacks of
linear approximations. The ability of MPC to manage
system restrictions and trajectory tracking is particularly
well known. Comparative studies between real-time MPC
and LQR on rotary pendulums demonstrate that, although
MPC handles constraints better, it struggles with sampling
noise and severe computational demands on embedded
hardware [21]. Integrating model refinement procedures to
increase prediction accuracy is one way that MPC is being
improved [27]. In a similar vein, strong control techniques
like worst-case optimization and Bayesian control have
been put out as a means of dealing with sensor uncertainty
and perturbations [23] [28]. Additionally, hierarchical
sliding mode control (HSMC) coupled with optimization
methods has been demonstrated to lessen the "chattering"
effect frequently seen in robust control, resulting in
superior performance when compared to standard SMC or
LQR [22] [33].

The use of Reinforcement Learning (RL) and Machine
Learning (ML) in the CIP system is a quickly expanding
trend in contemporary literature. These techniques seek to
infer control rules straight from data. Reinforcement
learning methods like Q-learning and Deep Q-Networks
have shown the potential to swing up and stabilize
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pendulums, sometimes outperforming PID and LQR
measures [29] [31]. To make use of big data for controller
tuning, more complex frameworks combine RL with MPC
[26], or they use "Sim-to-Real" transfer to close the gap
between simulation and physical hardware [24]. But
compared to traditional physics-based models, these
techniques frequently have significant implementation
complexity, instability during the training process, and a
lack of transparency [32] [34].

Although sophisticated nonlinear and learning-based
controllers can perform well in certain situations, they
usually have high computational costs and are difficult to
implement. On the other hand, the Pole Placement
technique provides a straightforward and computationally
efficient approach that is excellent for comprehending the
system's underlying dynamics [12]. Even with the
introduction of modern algorithms, Pole Placement is still
a potent method for archiving a balance between response
speed and energy efficiency.

3. The proposed approach

3.1. System Modelling
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Fig.1. The cart inverted pendulum

Fig 1 illustrates the cart inverted pendulum system. A
DC motor is used to move the cart along x-axis direction.
The mechanical transmission using belt and pulley is used
to gain the actuator torque. The velocity and the
acceleration of the cart are controlled by controlling the
angular velocity and acceleration of the DC motor.[36]

A. Mathematical Model of the CIP

A mathematical model of the cart inverted pendulum
should be derived to map the system input (the force
applied to cart, f) to the system output (x,0).In a

mathematical notation, the mapping can be expressed
asf ER'- (x,0) €R? In thi swor k,Lag range’s
Equation is used to describe the system model. The basic
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tenet of Lagrange’s equation is the description of the
system by one of equalised coordinate g =
{1, ,qi, - , qn}, where nis the total assigned equalised
coordinate. g;is a free degree of freedom of true system
which totally combine the constraints unique to that
system, i.e., the communication among parts of the system.
The Lagrangian equation £ is declared by the potential
energy Pand the kinetic energy Kas explained as

L=K(q.q) -Plq) €))
where q = [x, 0] is the vector of equalized coordinate and
q is the derivation of it, K is the total of the system’s
kinetic energy and P is the system’s potential energy. In
this inverted pendulum system, the kinetic energy is
governed by two factors including the kinetic energy of the
cart, Ky, as well as the kinetic energy of the pendulum,
JKm, which are respectively presented:

1 2
Ky = 5 Mi? 2)

&”:émﬁw+h) 3)

where M is the cart mass, X’ is the cart’s linear velocity, m
is the pendulum mass, x'¢ is the rate of the pendulum
position following to the horizontal axis and h" is the rate
of the pendulum position on the vertical axis. Based on Fig.
1, the total kinetic energy of the system is derived
K = Kuy+Kn
= éj.f.j-‘-’ + _]—)ra:[.r"2 + 2#10 cos § + 1207) )
On the other hand, the potential energy is directly affected
by the mass of the pendulum m, which is presented as
P = mgh 5
= mglcosfl )
In general, the Eq. (1) can be rewritten with the
subcomponents from Eq. (2) to Eq. (5) as follows:
L. oz 1. 2 ; .
o= 5;“.!.}2 + im(.s-‘ + 2ilfcos B + 126°) ©)
—mgl cos @

In terms of x and 6, the derivatives of the Eq. (1) following
to x and 0 are respectively derived:

d [ac oL

F(d—),— - )
d _0&) or _ .
dt\ag) o0 ®)

Deriving for each term in the differential equation in Eq.
(7) and Eq. (8), it can be obtained that

L ;
(J = (m+ M)+ milfcosf ©)
or
d foC = - o .
e (d—) = (m+ M)i+mi(fcos — 6 sinf) (10)
dr T
ac
= = 0 (11)
and
:;—ﬁ = mlicos@ + mi*0 (12)
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:Tlé (%ﬁ) = ml(i cos f — fisin 0) + mi%4 (13)
% = —milfsinf + mgl sin @ 14
Substituting from Eq. (9) to Eq. (14) into Eq. (7) and Eq.
(8), the dynamics model of the inverted pendulum system

is declared as follows

f = (M+m)i+ mlf (15)

0 = #+10—gb (16)

From Eq. (15) and Eq. (16), it is noted that the existence of
those non-linear components sin(), cos(), 02, leading to the
nonlinearity of the inverted pendulum system.
Assumption 1. To linearize the system, it is assumed that
the pendulum rotates near around the equilibrium (6~0). As
a result, it can be approximated that sin #= 6, cos 0= 1, 2
~0, 6 and 66 = 0.

B. DC Motor: Torque, Armature Voltage, and Angular
Velocity of this model

The DC motor armature circuit equation can be calculated
using Kirchhoff's voltage law:

taRa + La— + v i— Va (17)

Fig. 2. DC Motor Armature Equivalent Circuit

The relation between generated back electromotive force

(emf), Vb, and the rotational speed of the rotor is:

. df,

vy = n’\r,w (18)

where K, is the back emf constant.
The torque of motor 1; is the output of the actuator that
ultimately causes the force to move the cart.

71 = Kiig (19)
where K is the motor torque constant.

The Eq. (20) is the expression of the DC motor armature
circuit equation where the armature current and its
derivative have been substituted by terms involving the
motor torque and the motor angular velocity.

T d?7 . déy
—R+ er . r la
K, @z " a ‘ (20)

Ignoring the motor inductance, the function of armature
circuit can be simplified as:
Ky, K

T1 = —)'\.;E(.d] -+ Ei.”

@n
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The mechanical transmission ratio in the system can be
calculated as:

™ ;’\.g w1 ra

—=—=—=— 22

T1 ;\ 1 wo | ( )
where r is the radius of the pulley and N is the gear teeth
number.

The relation between the motor angular velocity and the
cart velocity x' is

2]’”‘-__; ra 2

— = = (23)
xr r W

Eq. (24) connects the rotational output of the motor to
the linear movement of the cart. This allows the preceding
electrical model to be expressed entirely in terms of the
cart's mechanical state variables.

T

Combining Eq. (24) and Eq. (21), the Eq. (25) can be
obtained as:

. . B :
1 = K.(-K g Va) (25)
1
The torque t,causing the force that moves the cart, so, the
transform is needed 7; ~ t,. Consequently, using fr, =
T,(the force that perpendicular to the direction of r, from
pulley centre), it can be verified that
K, i

f=="(-Kp—+v,) (26)
8 r
where K, =%. From Eq. (36) and Eq. (25), a new

Lagrange’s function in term of equalised coordinate xis
declared as

&"u = (M+m)i+ !\r‘:\; & + mlf 27)

T T1

The following notions are used to simplify the
derivation.
J'\',.I\'f
(r1)?
o = o (29)

2 -

G = (28)

from Eq. (27), and from the term 6~ and Eq. (16) into
Eq. (27), the first differential equation can be described as
2 1

(C'.‘.”‘u = C]‘I == “I”U} (30)

r = -—
M

From Eq. (16), the angular acceleration can be obtained
as:

(08— ) 31)

From Eq. (30) and Eq. (31), the second differential
function of the system can be formed as

i 1 1 .
8 = 7 (g.‘) M (covy — 1 — ”‘ﬂ”]) (32)

c2 ¢t . (M+m)g
. BRI NS oA

Mt Tt Mi

Ultimately, the differential equations describing the
cart-pendulum system were derived using Lagrange’s

2 EA

0 =

(33)

method, while explicitly incorporating actuator dynamics
into the mathematical model.

3.2. State Space Modelling

For further analysis, the mathematical model of the
system should be translated into the state space model. The
general form of a system state space is shown in Fig. 3[36].

D

uin x(n X0
B(1) Jde Cin

Al K

Fig. 3. Open Loop System Representation in State
Space Equation

State space representation equation can be expressed as
x = Ax+Bu 35)
y = Cx+Du (36)
where n is the total number of the state variables and x€
R" is a state vector. X" is the time derivative of the state
vector.[36]
A vector u € R¥is the control vector or control input which
has k elements of control variables. The matrices A€ R**",
Be R"*k and C € RP*" are named the system, the output
and the input matrices, successively, where ppp is the
output number.[36] The output vector is declared as y€ RP

For the case of the cart inverted pendulum system, the
state vector, the derivative of the state vector and the input
of the state vector are declared as x=[x 0x 0']T, x'=[x" 0'x"

07]T,u=v,,. In this case, the total number of the state
variables is n=4. Arranging Eq. (40) and Eq. (43) into the
state space form, the system matrices obtained as
follows[36]:

0 0 1 0

0 0 0 1
A = L

e i -

0 S5 sh O

) .

0 . 1 0 0 0

B = S0 100
y = [z0]", D=0

Only x and 6 can be observed directly from sensors in
assumption, in the sense that the observed value from the
sensor is the actual value. In practical, the conversion from
the actual to the value that is used for the computation is
required.[36]

¥(1)
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3.3. The Pole Placement Method

The open—loop dynamics are determined by the
characteristic polynomial of the matrix A:
|sI — Al=s"+ars" '+ tan1sta. (37)

The coefficients a; correspond to the current locations of
the system poles.
A. Specify the desired closed-loop poles

From the design requirements on transient response
such as settling time, overshoot, and damping - we choose
an appropriate set of desired closed-loop poles i,...,Hn.
These poles define a new characteristic polynomial:

H(s pi) =s8"+ 18" anis oy (38)
i=1
The coefficients o; are the target coefficients that the
closed-loop characteristic polynomial should attain.
B. Transform the system to controllable canonical form
Assume that the pair (A, B) is controllable. Then there
exists a change of state variables x=T, such that the
transformed pair (A, Bc) is in controllable canonical form.
The transformation matrix T is constructed from the
controllability matrix C= [B AB...A™!B] and an auxiliary
companion-type matrix W derived from the coefficient a;:

T=cw (39)

Using the matrix A and B, the controllability matrix can
be calculated as € = [B AB A?B A’B]. Using the
following parameters (M=1 kg, m=0.1 kg, 1=0.25 m,
11=0.015 m, R.=1 Q, K=K=0.02),

0 1.3333 —2.3704 9.407

0 —5.3333 9.4815 —246.8293
1.3333 —-2.3704 9.4407 —26.0752
—5.3333 94815 —-246.8293 475.9751

Therefore, rank(C) = 4, confirming that the linearized
system is fully controllable.
C. Compute the state-feedback gain matrix

In the z-coordinates, with A, in companion form, the
feedback gain vector in controllable canonical form can be
obtained directly from the difference between the desired
coefficients o and the original coefficients a;.
Transforming back to the original coordinates yields the
state-feedback gain

K=la, au, G1— QG1, --; G —ag, ay —a; | T (40)

With the control law u=—Kx, the closed-loop matrix A
= A—BK has the characteristic polynomial given by (35).
In other words, all closed-loop poles are placed exactly at
the prescribed locations p; chosen in A.[36]

In tracking problems, a static input pre—compensator can
be included so that

u=Nr—Kx 41

where the scalar (or diagonal) gain N is selected to achieve
the desired steady-state accuracy for a step reference. The
overall state—feedback closed-loop structure with this pre—
gain is illustrated in Fig. 4.

2 EA

Fig. 4. Closed loop system with pre-gain

4. Result and discussion

To verify the effectiveness of the proposed control
method, simulations have been performed in MATLAB.
The parameters of the CIP system were determined as
depicted in Table 1.

Table 1. The CIP parameters.

Parameters Value Unit
Armature resistance 1 Q
Motor torque constant 0.02 Nm/A
Back emf constant 0.02 Vs/rad
Motor pulley radius 0.015 m
Pendulum mass 0.1 kg
Cart mass 1 kg
Pendulum rod length 0.25 m
Gravitational acceleration 9.81 m/s?
1073 Step Response without Gain
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Fig. 5. Pendulum angle response

Fig. 5 shows the open-loop angle 0(t) after a
smalldisturbance from the upright position. The pendulum
quickly tips over and its angle grows roughly exponentially
until it hits mechanical limits, confirming that the
linearized CIP has an unstable pole in the right-half plane.
This baseline clearly illustrates that, without feedback, the
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system cannot maintain balance and motivates the use of a
pole-placement controller.

Fig. 6 shows the corresponding cart motion x(t). As the
pendulum falls, the reaction forces cause the cart to
accelerate away from x(0) = 0, often moving more than 1
m in a few seconds with a roughly parabolic trajectory.
Thus, the controller must both balance the pendulum and
bring the cart position back to its reference using only one
control input.

Step Response without Gain
005r

Case 1
= = =(Case?2

Cart Position (m)

02

-0.25

03 . . . L . . . . . )
0 5 10 15 20 25 30 35 40 45 50
time (sec)

Fig. 6. Cart position response

Fig. 6 shows the closed-loop pendulum angle when the
state-feedback law u=—Kx (designed by pole placement) is
applied. In contrast to the unstable open-loop case, the
angle now returns smoothly to zero, with rise time about
0.5 s, settling time around 1.5 s, and overshoot near 15%,
all determined by the chosen pole locations. Selecting
dominant poles with damping ratio {~0.7 gives a good
compromise between speed and oscillation, and the steady-
state error is practically zero. This plot visually confirms
that shifting the system poles to the left-half plane via state
feedback stabilizes the CIP and achieves pendulum
balancing.

Fig. 7 shows the closed-loop cart position, highlighting
that the controller also achieves position regulation. Instead
of drifting away as in the open-loop case, the cart first
moves in one direction to help arrest the pendulum’s fall,
then smoothly returns to x=0. Its settling time, typically
around 34 s, is longer than that of the pendulum angle,
reflecting the energy exchange and the compromise of
controlling both states with a single actuator. The
negligible steady-state error confirms that the coupled
dynamics are well handled. By shifting the poles linked to
the cart dynamics further left the return to the origin could
be made faster, though at the cost of higher control effort.

2 EA

Step Response with Gain
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Fig. 7. Pendulum angle response with gain.
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Fig. 8. Cart position response with gain.

5. Conclusion

This work addressed the stabilization problem of the
underactuated and inherently unstable CIP system with the
pole placement method. By linearizing the nonlinear
dynamics around the upright equilibrium and verifying
system controllability, a state-feedback controller was
systematically designed through the selection of desired
closed-loop pole locations. The resulting gain matrix
successfully stabilized both the pendulum angle and cart
position. Extensive MATLAB/Simulink simulations
confirmed the controller’s effectiveness, demonstrated the
tunability of transient performance via pole assignment,
and highlighted the associated control-effort trade-offs.

The study contributes: (i) a clear derivation of the
linearized state-space model; (ii) a complete pole-
placement-based stabilization procedure; and (iii)
numerical validation demonstrating reliable closed-loop
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performance. Future work will focus on observer-based
output feedback, robustness enhancement, hardware-in-
the-loop implementation, and extending the methodology
to more complex underactuated systems.
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