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Abstract

The demand for high-precision, energy-efficient control in industrial robotics necessitates a rigorous comparison between
conventional and optimal control methods. This paper presents a detailed comparative analysis of the ubiquitous PID
(Proportional-Integral-Derivative) controller and the modern LQR (Linear Quadratic Regulator) optimal controller, applied
to the highly non-linear dynamics of a 3-DOF spherical articulated manipulator. The study extends beyond ideal tracking to
evaluate performance under realistic industrial constraints, including external disturbances, model uncertainty, and the novel

scenario of actuator saturation. Through comprehensive MATLAB/Simulink simulations, we quantify performance using
Root Mean Square Error (RMSE) and Integrated Control Effort (Jt*dt). The results demonstrate that while PID is simple,
LQR provides superior stability, higher resistance to parameter uncertainty, and optimal energy consumption across dynamic
trajectories. This work offers quantitative guidance for selecting the appropriate controller based on specific industrial
requirements, highlighting the trade-offs between implementation complexity and optimal system performance
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1. Introduction
Conventional Control (PID): Widely favoured for its

simplicity and reliable performance [3]. However, PID
1.1. Background struggles to maintain optimal performance when dealing
with highly coupled, non-linear dynamics typical of multi-
DOF robots.
Optimal Control (LQR): A modern state-space technique
designed to minimize a quadratic performance index,
effectively balancing state error minimization with control
effort minimization [4]. The application of LQR is justified
even for large trajectory movements because its solution
inherently provides strong stability margins (Phase and
Gain Margins) and operates on state error feedback

1.2. Overview of Control Strategies (e=x—x4), which drives the system toward the local linear
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Articulated robotic manipulators are central to modern
industrial ~automation, demanding high precision,
repeatability, and efficiency [1]. Controlling these systems
is challenging due to their strong non-linear dynamics and
coupling effects between joints [2]. This necessitates the
continuous evaluation of control strategies.
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region around the desired trajectory, effectively handling
the nonlinear terms in a stable manner [14].

1.3. Novelty and Contribution

A comprehensive, quantitative analysis focusing on
realistic industrial constraints—specifically ~Actuator
Saturation and significant Model Uncertainty—when
applied to the coupled dynamics of a 3-DOF spherical
articulated manipulator is crucial.

This paper provides the following contributions:

1. Quantitative Comparison: Direct comparison of LQR
and PID using RMSE and Integrated Control Effort (Ig)
across various scenarios.

2. Realistic Scenario Evaluation: Benchmarking robustness
against external disturbances and model uncertainty.

3. Novel Actuator Limit Assessment: Quantifying the
effect of control input saturation on trajectory tracking
stability, a critical factor in practical robot applications.

2. Literature review

2.1. Conventional PID Control and
Limitations

The Proportional-Integral-Derivative (PID) controller
remains the most widely implemented control architecture
in industrial robotics [3] due to its simplicity, low
computational cost, and ease of implementation [6]. Its
effectiveness is undeniable for single-input single-output
(SISO) systems or processes operating near a stable
equilibrium point.

However, the application of decentralized PID control to
complex robotic manipulators presents significant
limitations:

Decentralization Issue: PID controls each joint
independently, effectively ignoring the highly coupled,
non-linear  dynamics (Coriolis, centrifugal, and
gravitational forces) inherent in multi-DOF arms.
Robustness Compromise: The gains (K,,K;,Kq) are fixed
and tuned for a specific operating point. Consequently, PID
performance degrades severely when the robot experiences
large dynamic changes, external disturbances, or model
uncertainties (such as unknown payload mass) [7].

Tuning Complexity: Achieving an optimal balance across
all joints simultaneously for both transient response and
steady-state error is often difficult and time-consuming.

2.2. Optimal LQR Control and Applicability

The Linear Quadratic Regulator (LQR) is a robust, state-
space-based optimal control technique designed to
overcome the limitations of classical decentralized control
[4]. LQR operates on a linear system model, which is
typically derived by linearizing the robot's dynamics
around a point of interest.

The key advantages of LQR, which justify its adoption
over PID in demanding applications, include:
Multivariable Handling: LQR inherently designs a single
feedback gain matrix (K) that simultaneously accounts for
all state variables (q,q") across all joints [8], providing a
holistic control solution to the coupled system.
Performance Optimization: By minimizing the quadratic
cost function J, LQR ensures an optimal trade-off between
tracking error minimization and control effort expenditure
[9]. This direct approach leads to lower energy
consumption compared to empirically tuned PID.

Intrinsic Robustness: The solution of the Riccati equation
provides LQR with guaranteed stability margins, often
yielding better intrinsic robustness to moderate system
noise and parameter variations than PID.

2.3. Necessity of Comparison under
Practical Constraints

While the theoretical superiority of LQR is established, a
gap exists in quantifying the benefits when facing real-
world industrial constraints:

Model Uncertainty (from mass variations): Studies have
demonstrated that LQR is sensitive to linearization
inaccuracies, but its performance relative to PID under
specific, measurable parameter uncertainty (like a 20%
mass mismatch) needs explicit quantification.

Actuator Saturation (Novelty): Most literature ignores the
physical limits of the motors. When the command torque
hits the physical limit (Tmax), the system becomes non-
linear, often leading to integrator windup (in PID) and
accumulated error. Comparing how LQR's integrated,
optimal torque distribution handles this saturation
constraint compared to PID's independent loops is a
crucial, novel area of study. The quantitative analysis of
this scenario will directly influence controller selection for
high-payload, high-speed robotic systems [11].

3. Methodology

3.1. Dynamic Model (Lagrange-Euler)

Figure 1. Geometric Paramteter of robot (side view)
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Figure 2. Geometric Paramteter of robot (top view)

The Lagrange-Euler (LE) method is used to construct the
non-linear dynamic model of the system.
The generalized dynamic equation for a 3-DoF manipulator
is:
T=M(0)0+V(0,0)+G(O)[12] (1)
Where:
T is the 3x1 input torque vector
M(0) is the 3x3 inertia matrix
V(0,07) is the 3x1 vector containing the Coriolis and
centrifugal forces
G(0) is the 3x1 gravity vector
We have the equation representing all components of M(6)
below:

M11 M12 M13

9) = [MZl M22 M23]
M31 M32 M33

1 1 1
M11 = ;mlaf + ;mlaé +m, (a; cos 9; + Eaé cos(@2 + 83)2 + aya, COS(GZ + 93) COSGZ)

+ —m.dicos 6
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M12=M21=0
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The matrix V(0,07) is expressed as:

V(6,0) =|v21

V31

Vlll
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The matrix G(0) is expressed as:

G11

G(O) = [0211

631
G11=0

1 1
G21 = > M3 a3c08 (6, +65) + > M29a,C08 0,
+ mzga,cos 6,

1
G31 = - M3ga3c08 6, +65)

3.2. LQR Controller Design
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Linear State-Space Model
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Figure 3: The closed loop manipulator system with
LQR full state feedback controller

To design the LQR, the non-linear dynamic model
(above) is linearized and expressed in state-space
form:
X=AX+BU )
Y=CX+DU 3)
State and Input Variables:
The state vector X (3 x 1) includes 3 joint positions and 3

joint velocities: X" = [0, 6, 6; 6, 6, 6]

Vector dau vao U(3 x 1)la cAc md-men xoan: UT =

[T1 T2 T3]

Vector dau vao U(3 x 1)1a cic van tdc gbc YT =

(61 602 65]

State Matrices (A, B): The matrices A(6x6) and B (6x3)
are determined as follows:

03x3 I3x3
A= [om — M) .[v(6,6) + G(6)]
03x3
B= [M(e)—l]

Output Matrices (C, D): The output matrix C (3x6) and
matrix D (3x3) are determined as follows:

1.0 00 00
C=|0 1 0 0 0 0|;D=1[03,]
0 01000

Cost Function and Weighting Matrices (Q, R): LQR seeks
to optimize the input vector U to minimize the cost function
I

J = [(XTQX + UTRU)dt (4)
Q is the 6x6 weighting matrix for the states (prioritizing
speed/accuracy)

R is the 3x3 weighting matrix for the inputs (prioritizing
energy saving)

The Q and R matrices that have been tuned for optimal
performance are detailed below:

2 EA

10000 0 0 0 0 0
0 100000 0 0 0 0
0 = 0 0 100000 0 0 0
- 0 0 0 800 0 0
0 0 0 0 500 O
0 0 0 0 0o 500
1 0 O
R=]0 1 0
0 0 1

Control Law: The LQR controller computes the gain
matrix K by solving the Algebraic Riccati Equation (ARE)
(P.T. 39). The final full-state feedback control law is:

U= —K*X 5)

The gain matrix K is calculated as follows:

100 0 0 325.32 0 0
K= 0 100 0 0 316.35 102.11
0 0 100 0 102.11 112.14

4. Simulation And Results

4.1. Simulation Image Analysis

The simulation results for the LQR controller are shown in
Figure 4, and the PID controller in Figure 4.

LQR Analysis (Figure 4): The position response plots (6,
,02,03) show the joints moving smoothly from the initial
position and stabilizing precisely at the final setpoint. Most
importantly, there is no overshoot in any of the responses,
demonstrating the optimality of the controller. The velocity
plots (8°1,0°2,0°3) increase abruptly and smoothly decrease
to zero when the setpoint is reached.

*a|PID_Model » -
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Figure 3. PID Model
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PID Analysis (Figure 4): Conversely, Figure 1 shows that
the PID response has significant overshoot in all three
joints before reaching the steady state. This overshoot is
undesirable, causing vibrations and potentially leading to
instability in real-world applications. The velocity peaks
are also higher compared to LQR, indicating an
"aggressive" and more energy-consuming control
behaviour.

Figure 4. Result of modelling

4.2. Quantitative Comparison Table

To clarify the performance differences, quantitative
metrics are extracted from the simulation results and
presented in the table below:

Table 2: Quantitative Comparison Table

Metric LGR PID

Settling Time (f1,#2) 1.2 seconds ~1.8 seconds

Settling Time (f3) 1.5 seconds ~2.1seconds

Overshoot None Yes

Complexity (3-DoF) Low (1loop, 2 /R matrices)  High (Requires 3 separate PID loops)

4.3. Quantitative Performance Analysis

Table 3: Quantitative Performance Comparison
Across Scenarios

Scenario Controller  RMSE Ie (f 7hdt) % Increase RMSE
(rad) (N.m.s) (vs. Ideal)
Ideal LQR 1.5 % 25.5 N/&
10 3
Ideal FID 2.2 x 38.0 N/A
102
Model Uncertainty (20% LQR 2.8 x 21.0 87%
Mass) 103
Uncertainty FID 5.5 x 40.0 150%
102
Actuator Saturation ( LGR 3.1 % 24.8 107%
Tmax = 100 N.m) 10
Saturation FID 6.0 x ars 172%

4.3. Analysis of Weighting Matrices and
Overshoot

The optimal LQR design provides explicit control over the
transient response. We affirm that the selected Q and R
matrices (Table II) yield minimal overshoot because the
high weighting on the position error terms in Q compels the
controller to minimize the state error aggressively without
excessive oscillation.

Table 4: Influence of Weighting Matrices on
Transient Response (Hypothetical)

Case Q Weighting I Weighting Resulting Behavior
(Position)
Optimal High (50) Low (0.1) Minimal Overshoot, Low Iy
(Selected)
Aggressive Very High (500) Very Low High Overshoot, High I (Fast
(0.01) Response)
Passive Low (5) High (1) Long Settling Time, Slight

Overshoot

4.4. Key Findings

Energy Optimization: LQR consistently achieves a
significantly lower Integrated Control Effort (Ig) than PID,
demonstrating superior energy optimization (25.5 Nms. vs
38.0 Nms.).

Robustness to Uncertainty: Under 20% mass uncertainty,
LQR maintained better performance, with its RMSE
increasing only 87%, compared to 150% for PID.
Actuator Saturation (Novelty): LQR handled the saturated
condition more gracefully due to its inherent optimal
distribution of torque, resulting in lower accumulated
tracking error (RMSE of 3.1x1073) compared to PID
(6.0x107%).

5. Conclusion

The results validate the transition from conventional to
optimal control for high-performance robotics. LQR is the
superior choice for dynamic, high-precision applications
requiring energy efficiency and robustness against
moderate uncertainties, as it provides a better stability
margin than the decentralized PID.

The findings have direct implications for industrial
deployment:

Energy Efficiency and Longevity: The significantly lower
IE of LQR is ideal for battery-powered or high-cycle
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industrial robots, leading to reduced operating costs and
potentially prolonging actuator lifespan.

Superior Saturation Handling: LQR's ability to handle the
saturated condition more gracefully, confirmed by the
quantitative analysis, is crucial for high-speed, heavy-
payload robots where actuators are frequently pushed to
their limits.

This study quantitatively demonstrated that the Optimal
LQR controller offers a substantial performance advantage
over the conventional PID controller for trajectory tracking
on a 3-DOF spherical articulated manipulator across ideal
and realistic scenarios, particularly concerning energy
optimization and robustness to model uncertainty. The
analysis of actuator saturation further confirmed LQR's
superiority in handling practical operational constraints.
This research improves upon existing LQR-PID
comparison works by explicitly quantifying the economic
benefits (IE) and demonstrating LQR's superior stability
under Actuator Saturation, a physical constraint often
overlooked in prior studies [11, 17, 19]. Future work
should focus on Adaptive LQR (A-LQR) strategies to
dynamically adjust gains for large parameter uncertainties
and implementing a Hybrid Control Scheme that utilizes
PID for basic stability and LQR for trajectory optimization.
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