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Abstract 

The demand for high-precision, energy-efficient control in industrial robotics necessitates a rigorous comparison between 
conventional and optimal control methods. This paper presents a detailed comparative analysis of the ubiquitous PID 
(Proportional-Integral-Derivative) controller and the modern LQR (Linear Quadratic Regulator) optimal controller, applied 
to the highly non-linear dynamics of a 3-DOF spherical articulated manipulator. The study extends beyond ideal tracking to 
evaluate performance under realistic industrial constraints, including external disturbances, model uncertainty, and the novel 
scenario of actuator saturation. Through comprehensive MATLAB/Simulink simulations, we quantify performance using 
Root Mean Square Error (RMSE) and Integrated Control Effort (∫τ2dt). The results demonstrate that while PID is simple, 
LQR provides superior stability, higher resistance to parameter uncertainty, and optimal energy consumption across dynamic 
trajectories. This work offers quantitative guidance for selecting the appropriate controller based on specific industrial 
requirements, highlighting the trade-offs between implementation complexity and optimal system performance 
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1. Introduction

1.1. Background 

Articulated robotic manipulators are central to modern 
industrial automation, demanding high precision, 
repeatability, and efficiency [1]. Controlling these systems 
is challenging due to their strong non-linear dynamics and 
coupling effects between joints [2]. This necessitates the 
continuous evaluation of control strategies. 

1.2. Overview of Control Strategies 

Conventional Control (PID): Widely favoured for its 
simplicity and reliable performance [3]. However, PID 
struggles to maintain optimal performance when dealing 
with highly coupled, non-linear dynamics typical of multi-
DOF robots. 
Optimal Control (LQR): A modern state-space technique 
designed to minimize a quadratic performance index, 
effectively balancing state error minimization with control 
effort minimization [4]. The application of LQR is justified 
even for large trajectory movements because its solution 
inherently provides strong stability margins (Phase and 
Gain Margins) and operates on state error feedback 
(e=x−xd), which drives the system toward the local linear 
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region around the desired trajectory, effectively handling 
the nonlinear terms in a stable manner [14]. 

1.3. Novelty and Contribution 

A comprehensive, quantitative analysis focusing on 
realistic industrial constraints—specifically Actuator 
Saturation and significant Model Uncertainty—when 
applied to the coupled dynamics of a 3-DOF spherical 
articulated manipulator is crucial. 
This paper provides the following contributions: 
1. Quantitative Comparison: Direct comparison of LQR
and PID using RMSE and Integrated Control Effort (IE)
across various scenarios.
2. Realistic Scenario Evaluation: Benchmarking robustness
against external disturbances and model uncertainty.
3. Novel Actuator Limit Assessment: Quantifying the
effect of control input saturation on trajectory tracking
stability, a critical factor in practical robot applications.

2. Literature review

2.1. Conventional PID Control and 
Limitations 

The Proportional-Integral-Derivative (PID) controller 
remains the most widely implemented control architecture 
in industrial robotics [3] due to its simplicity, low 
computational cost, and ease of implementation [6]. Its 
effectiveness is undeniable for single-input single-output 
(SISO) systems or processes operating near a stable 
equilibrium point. 
However, the application of decentralized PID control to 
complex robotic manipulators presents significant 
limitations: 
Decentralization Issue: PID controls each joint 
independently, effectively ignoring the highly coupled, 
non-linear dynamics (Coriolis, centrifugal, and 
gravitational forces) inherent in multi-DOF arms. 
Robustness Compromise: The gains (Kp,Ki,Kd) are fixed 
and tuned for a specific operating point. Consequently, PID 
performance degrades severely when the robot experiences 
large dynamic changes, external disturbances, or model 
uncertainties (such as unknown payload mass) [7]. 
Tuning Complexity: Achieving an optimal balance across 
all joints simultaneously for both transient response and 
steady-state error is often difficult and time-consuming. 

2.2. Optimal LQR Control and Applicability 

The Linear Quadratic Regulator (LQR) is a robust, state-
space-based optimal control technique designed to 
overcome the limitations of classical decentralized control 
[4]. LQR operates on a linear system model, which is 
typically derived by linearizing the robot's dynamics 
around a point of interest. 

The key advantages of LQR, which justify its adoption 
over PID in demanding applications, include: 
Multivariable Handling: LQR inherently designs a single 
feedback gain matrix (K) that simultaneously accounts for 
all state variables (q,q˙) across all joints [8], providing a 
holistic control solution to the coupled system. 
Performance Optimization: By minimizing the quadratic 
cost function J, LQR ensures an optimal trade-off between 
tracking error minimization and control effort expenditure 
[9]. This direct approach leads to lower energy 
consumption compared to empirically tuned PID. 
Intrinsic Robustness: The solution of the Riccati equation 
provides LQR with guaranteed stability margins, often 
yielding better intrinsic robustness to moderate system 
noise and parameter variations than PID. 

2.3. Necessity of Comparison under 
Practical Constraints 

While the theoretical superiority of LQR is established, a 
gap exists in quantifying the benefits when facing real-
world industrial constraints: 
Model Uncertainty (from mass variations): Studies have 
demonstrated that LQR is sensitive to linearization 
inaccuracies, but its performance relative to PID under 
specific, measurable parameter uncertainty (like a 20% 
mass mismatch) needs explicit quantification. 
Actuator Saturation (Novelty): Most literature ignores the 
physical limits of the motors. When the command torque 
hits the physical limit (τmax), the system becomes non-
linear, often leading to integrator windup (in PID) and 
accumulated error. Comparing how LQR's integrated, 
optimal torque distribution handles this saturation 
constraint compared to PID's independent loops is a 
crucial, novel area of study. The quantitative analysis of 
this scenario will directly influence controller selection for 
high-payload, high-speed robotic systems [11]. 

3. Methodology

3.1. Dynamic Model (Lagrange-Euler) 

Figure 1. Geometric Paramteter of robot (side view) 
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Figure 2. Geometric Paramteter of robot (top view) 

The Lagrange-Euler (LE) method is used to construct the 
non-linear dynamic model of the system. 
The generalized dynamic equation for a 3-DoF manipulator 
is: 
𝝉𝝉 = 𝑴𝑴(𝜽𝜽)𝜽̈𝜽 + 𝑽𝑽(𝜽𝜽, 𝜽̇𝜽) + 𝑮𝑮(𝜽𝜽) [12]   (1) 
Where: 
τ is the 3x1 input torque vector 
M(θ) is the 3x3 inertia matrix 
V(θ,θ˙) is the 3x1 vector containing the Coriolis and 
centrifugal forces 
G(θ) is the 3x1 gravity vector 
We have the equation representing all components of M(θ) 
below: 
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The matrix G(θ) is expressed as: 
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3.2. LQR Controller Design 
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Figure 3: The closed loop manipulator system with 
LQR full state feedback controller 

To design the LQR, the non-linear dynamic model 
(above) is linearized and expressed in state-space 
form: 

𝑿̇𝑿 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩 (2) 
𝒀𝒀 = 𝑪𝑪𝑪𝑪 + 𝑫𝑫𝑫𝑫 (3) 

State and Input Variables:  
The state vector X (3 x 1) includes 3 joint positions and 3 

joint velocities: 𝑋𝑋𝑇𝑇 = [𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃1̇ 𝜃𝜃2̇ 𝜃𝜃3̇] 

Vector đầu vào 𝑼𝑼(𝟑𝟑 𝒙𝒙 𝟏𝟏)là các mô-men xoắn: 𝑼𝑼𝑻𝑻 =
[𝝉𝝉𝟏𝟏 𝝉𝝉𝟐𝟐 𝝉𝝉𝟑𝟑] 
Vector đầu vào 𝑼𝑼(𝟑𝟑 𝒙𝒙 𝟏𝟏)là các vận tốc gốc 𝒀𝒀𝑻𝑻 =
[𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑] 
State Matrices (A, B): The matrices A(6x6) and B (6x3) 
are determined as follows: 

𝐴𝐴 = �
𝑂𝑂3𝑥𝑥3 𝐼𝐼3𝑥𝑥3
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Output Matrices (C, D): The output matrix C (3x6) and 
matrix D (3x3) are determined as follows: 
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Cost Function and Weighting Matrices (Q, R): LQR seeks 
to optimize the input vector U to minimize the cost function 
J: 

𝐽𝐽 =  ∫(𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑈𝑈𝑇𝑇𝑅𝑅𝑅𝑅)𝑑𝑑𝑑𝑑   (4) 
Q is the 6x6 weighting matrix for the states (prioritizing 
speed/accuracy) 
R is the 3x3 weighting matrix for the inputs (prioritizing 
energy saving) 
The Q and R matrices that have been tuned for optimal 
performance are detailed below: 

𝑄𝑄 =  

⎣
⎢
⎢
⎢
⎢
⎡
10000 0 0 0 0 0

0 100000 0 0 0 0
0 0 100000 0 0 0
0 0 0 800 0 0
0 0 0 0 500 0
0 0 0 0 0 500⎦

⎥
⎥
⎥
⎥
⎤

𝑅𝑅 = �
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0 0 1

� 

Control Law: The LQR controller computes the gain 
matrix K by solving the Algebraic Riccati Equation (ARE) 
(P.T. 39). The final full-state feedback control law is: 

𝑈𝑈 =  −𝐾𝐾 ∗ 𝑋𝑋  (5) 

The gain matrix K is calculated as follows: 

𝐾𝐾 =  �
100 0 0 325.32 0 0

0 100 0 0 316.35 102.11
0 0 100 0 102.11 112.14

� 

4. Simulation And Results

4.1. Simulation Image Analysis 

The simulation results for the LQR controller are shown in 
Figure 4, and the PID controller in Figure 4. 
LQR Analysis (Figure 4): The position response plots (θ1
,θ2,θ3) show the joints moving smoothly from the initial 
position and stabilizing precisely at the final setpoint. Most 
importantly, there is no overshoot in any of the responses, 
demonstrating the optimality of the controller. The velocity 
plots (θ˙1,θ˙2,θ˙3) increase abruptly and smoothly decrease 
to zero when the setpoint is reached. 

Figure 3. PID Model 
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PID Analysis (Figure 4): Conversely, Figure 1 shows that 
the PID response has significant overshoot in all three 
joints before reaching the steady state. This overshoot is 
undesirable, causing vibrations and potentially leading to 
instability in real-world applications. The velocity peaks 
are also higher compared to LQR, indicating an 
"aggressive" and more energy-consuming control 
behaviour. 

Figure 4. Result of modelling 

4.2. Quantitative Comparison Table 

To clarify the performance differences, quantitative 
metrics are extracted from the simulation results and 
presented in the table below: 

Table 2: Quantitative Comparison Table 

4.3. Quantitative Performance Analysis 

Table 3: Quantitative Performance Comparison 
Across Scenarios

4.3. Analysis of Weighting Matrices and 
Overshoot 

The optimal LQR design provides explicit control over the 
transient response. We affirm that the selected Q and R 
matrices (Table II) yield minimal overshoot because the 
high weighting on the position error terms in Q compels the 
controller to minimize the state error aggressively without 
excessive oscillation. 

Table 4: Influence of Weighting Matrices on 
Transient Response (Hypothetical) 

4.4. Key Findings 

Energy Optimization: LQR consistently achieves a 
significantly lower Integrated Control Effort (IE) than PID, 
demonstrating superior energy optimization (25.5 Nms. vs 
38.0 Nms.). 

Robustness to Uncertainty: Under 20% mass uncertainty, 
LQR maintained better performance, with its RMSE 
increasing only 87%, compared to 150% for PID. 
Actuator Saturation (Novelty): LQR handled the saturated 
condition more gracefully due to its inherent optimal 
distribution of torque, resulting in lower accumulated 
tracking error (RMSE of 3.1×10−3) compared to PID 
(6.0×10−3). 

5. Conclusion

The results validate the transition from conventional to 
optimal control for high-performance robotics. LQR is the 
superior choice for dynamic, high-precision applications 
requiring energy efficiency and robustness against 
moderate uncertainties, as it provides a better stability 
margin than the decentralized PID. 
The findings have direct implications for industrial 
deployment: 
Energy Efficiency and Longevity: The significantly lower 
IE of LQR is ideal for battery-powered or high-cycle 
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industrial robots, leading to reduced operating costs and 
potentially prolonging actuator lifespan. 
Superior Saturation Handling: LQR's ability to handle the 
saturated condition more gracefully, confirmed by the 
quantitative analysis, is crucial for high-speed, heavy-
payload robots where actuators are frequently pushed to 
their limits. 
This study quantitatively demonstrated that the Optimal 
LQR controller offers a substantial performance advantage 
over the conventional PID controller for trajectory tracking 
on a 3-DOF spherical articulated manipulator across ideal 
and realistic scenarios, particularly concerning energy 
optimization and robustness to model uncertainty. The 
analysis of actuator saturation further confirmed LQR's 
superiority in handling practical operational constraints. 
This research improves upon existing LQR-PID 
comparison works by explicitly quantifying the economic 
benefits (IE) and demonstrating LQR's superior stability 
under Actuator Saturation, a physical constraint often 
overlooked in prior studies [11, 17, 19]. Future work 
should focus on Adaptive LQR (A-LQR) strategies to 
dynamically adjust gains for large parameter uncertainties 
and implementing a Hybrid Control Scheme that utilizes 
PID for basic stability and LQR for trajectory optimization. 
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