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Abstract 

Robotic technologies, particularly robotic manipulators, play an important role in both industrial automation and smart 
agriculture. In agricultural sectors where automation remains underutilized and labor cost is high, robotic solutions are 
necessary for enhancing productivity. However, developing agricultural robots faces significant challenges due to harsh 
environmental conditions, limited resources, and strict human-robot collaboration safety requirements. Consequently, 
advanced control algorithms are critical for maintaining high precision under operational disturbances, such as vibrations 
from internal combustion engine-powered tractors. This study proposes a robust Linear-Quadratic Regulator combined with 
Integral control (LQR-KI) for 2-DOF flexible joint robots. While flexible joint manipulators offer a safety and reduced 
structural weight compared to traditional rigid systems, they are affected by complex, non-ideal coupling vibrations. The 
proposed control structure focuses on enhancing stability and positioning accuracy, with its robustness verified through an 
extensive analysis of closed-loop pole trajectories under non-ideal agricultural excitations. Numerical simulations 
demonstrate that the LQR - KI scheme effectively isolates base vibrations, achieving a significant link positioning accuracy 
of 0.03 (rad). Especially, the results validate that the flexible joint configuration, optimized by the proposed controller, can 
achieves approximately 9.36% energy savings compared to conventional rigid-link counterparts. This research contributes 
to sustainable production by providing a high-performance, energy-efficient solution for integrating advanced robots into 
existing agricultural platforms. 
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1. Introduction

Robotic systems have become a foundational element of 
modern industrial automation, driven by trends such as 
Industry 4.0 and the increasing demand for high-speed, 
flexible, and production processes that involve people 
directly [22]. Robotic arms are moving away from heavy-
duty, stiff-joint configurations toward lighter, more 
flexible designs, supporting safe human-robot interaction 
and efficient operation [23]. Among these designs,  

manipulators equipped with flexible joints stand out due to 
their reduced inertia, simplified mechanical structure, and 
enhanced dynamic performance. Therefore, they allow for 
safer operation in shared human environments and 
contribute to faster repositioning in repetitive tasks.  

We assume that these flexible-joint designs are uniquely 
suited for smart agriculture, where joint elasticity serves as 
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a vital feature for safe interaction with human workers and 
delicate crops. In this context, collaborative robots (cobots) 
are increasingly necessary for precision tasks like 
harvesting and spraying. However, integrating elasticity 
introduces significant technical challenges, such as 
complex coupling vibrations and difficulties in trajectory 
tracking [24, 25]. While recent work has explored smart 
control methods, adaptive algorithms, and vibration 
suppression strategies [6], many of these solutions incur 
high computational costs, require extensive modeling or 
tuning, and may be difficult to implement in practical 
agricultural field environments. 

Beyond the nonlinear control research mentioned above, 
considering linear control methods for these models is 
essential, especially under constraints of limited power, 
memory resources, and harsh environmental conditions 
typical of agricultural settings. Tusset et al proposed   a 
hybrid controller combining concepts of a PID controller 
with LQR and a feedforward gain to control the 
positioning of 2-DOF flexible-joint robotic arm operating 
under non-ideal excitations [1, 27]. Positioned within the 
specific context of robotic applications in smart farming, 
this study proposes a robust Linear-Quadratic Regulator 
combined with Integral control (LQR-KI) for a 2-DOF 
flexible-joint robotic arm operating under non-ideal 
agricultural excitations. By replacing complex feedforward 
terms with a simplified integral action, we aim to achieve 
an optimal balance between implementation simplicity and 
superior vibration suppression, while significantly 
improving energy efficiency by approximately 9.36%. 

2. Literature Review

Classical control strategies such as PID and model-
based feedback have been widely used for robotic 
manipulators [2,3,14]. These approaches are relatively 
simple to implement and tune, and they are still the 
dominant choice in many industrial applications. However, 
when joint flexibility, parameter uncertainties or fast 
trajectories are involved, purely PID-based designs may 
suffer from poor transient performance and limited 
robustness. 

In the case of flexible or flexible-joint manipulators, 
the control problem becomes more challenging due to 
elastic deformation, vibration propagation and strong 
coupling between links [2,4,5]. Various strategies have 
been proposed to control these effects, including intelligent 
control [4], adaptive prescribed performance control [5], 
model predictive control [8]. While these nonlinear 
methods achieve high precision in laboratory settings, they 
often require high-end processing units, making them less 
ideal for harsh agricultural environments where energy 
efficiency and hardware cost-effectiveness are necessary. 

Robust and adaptive control scenarios have also been 
studied to face disturbances, unknown parameters and non-
ideal excitations [6,11,13,15,16,17,21]. These aim to 
guarantee performance but often at the cost of increased 

implementation complexity and heavy computational 
processes. In agricultural cobots, there is a clear necessity 
for controllers that balance simplicity with effective 
vibration suppression. 

A different direction focuses on combining classical 
structures with optimal techniques like LQR to achive the 
advantages of both. Tusset et al. investigated a hybrid 
scheme for manipulators under non-ideal excitation, 
providing a foundation for improvements in position 
control. Inspired by these results, this paper proposes an 
LQR-KI strategy applied to an 8th-order linear state-space 
model. Our goal is to ensure the controller is 
mathematically rigorous yet light enough for standard 
microcontrollers, while demonstrating that optimized 
flexible joints can achieve approximately 9.36% energy 
savings over rigid counterparts. 

3. Methodology

3.1 The dynamic model 

The mechanical system diagram of the robotic arm 
with flexible joint can be shown in Fig. 1 where the angular 
coordinates are 𝜽𝜽 = [𝜃𝜃1 𝜃𝜃2]𝑇𝑇  and 𝜽𝜽𝑀𝑀 = [𝜃𝜃3 𝜃𝜃4]𝑇𝑇 the 
rectangular coordinates 𝑝𝑝1 = �𝑝𝑝1𝑥𝑥  𝑝𝑝1𝑦𝑦�,  𝑝𝑝2 = �𝑝𝑝2𝑥𝑥 𝑝𝑝2𝑦𝑦�. 
The system consists of two rigid links 𝐿𝐿1𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿2, connected 
through two flexible joints characterized by the joint 
stiffness 𝑘𝑘𝑏𝑏. The second link is excited by a DC motor. 

Fig.  1. Schematic of 2 DoFs Robot arm 

As figure 1, the dynamic model of the robotic 
manipulator can be divided into two components: the link 
positions (𝜽𝜽) – link side and the motor positions (𝜽𝜽𝑴𝑴) - 
motor side 

The link-side are derived using the Euler–Lagrange 
formulation, resulting in the following equations [1,27]: 

𝑴𝑴(𝜽𝜽)(𝜽𝜽)̈ + 𝑽𝑽�𝜽𝜽, 𝜽̇𝜽�𝜽̇𝜽 + 𝑮𝑮(𝜽𝜽)  + 𝑭𝑭𝒂𝒂𝜽̇𝜽 = 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  (1) 
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Here: M is the matrix of inertia, V is the matrix of 
Coriolis and centrifugal force, G is the gravity vector, 𝐹𝐹𝑎𝑎 is 
the vector of viscous and 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   is the applied torque. 

𝑴𝑴 = �
𝒎𝒎𝟏𝟏𝟏𝟏 𝒎𝒎𝟏𝟏𝟏𝟏
𝒎𝒎𝟐𝟐𝟐𝟐 𝒎𝒎𝟐𝟐𝟐𝟐

�, 𝑽𝑽 = �𝑽𝑽𝟏𝟏𝑽𝑽𝟐𝟐
�, 𝑮𝑮 = �

𝒈𝒈𝟏𝟏𝟏𝟏
𝒈𝒈𝟐𝟐𝟐𝟐�, 𝑭𝑭𝒂𝒂 = �𝒌𝒌𝒂𝒂𝒌𝒌𝒂𝒂

�

 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = �
𝒃𝒃𝒔𝒔�𝜽̇𝜽𝟑𝟑 − 𝜽𝜽𝟏̇𝟏� + 𝒌𝒌𝒃𝒃(𝜽𝜽𝟑𝟑 − 𝜽𝜽𝟏𝟏)
𝒃𝒃𝒔𝒔�𝜽̇𝜽𝟒𝟒 − 𝜽𝜽𝟐̇𝟐� + 𝒌𝒌𝒃𝒃(𝜽𝜽𝟒𝟒 − 𝜽𝜽𝟐𝟐)

�. 

Where 𝑏𝑏𝑠𝑠 is joint damping coefficient, 𝑘𝑘𝑏𝑏 is the 
stiffness ratio of spring, 𝑘𝑘𝑎𝑎 link viscous friction coefficient. 
In this case, for simplicity in control design, the moment of 
inertia of the links about their center of mass 𝐼𝐼1, 𝐼𝐼2 are 
assumed to be zero, effectively treating the links as point 
masses located at their center of gravity 𝑙𝑙𝑐𝑐𝑐𝑐 , (𝑖𝑖 = 1,2). 
𝑚𝑚11 = 𝑚𝑚1𝑙𝑙𝑐𝑐12 + 𝑚𝑚2𝑙𝑙12 + 𝑚𝑚2𝑙𝑙𝑐𝑐22 + 2𝑚𝑚2𝑙𝑙1𝑙𝑙𝑐𝑐2cos (𝜃𝜃2); 
𝑚𝑚21 = 𝑚𝑚12 = 𝑚𝑚2𝑙𝑙𝑐𝑐22 +  𝑙𝑙1𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃2); 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚22 = 𝑙𝑙𝑐𝑐22 𝑚𝑚2.  
𝑣𝑣11 = −𝑚𝑚2𝑙𝑙1𝑙𝑙𝑐𝑐2 sin(𝜃𝜃2)𝜃̇𝜃2 + 2𝜃̇𝜃1𝜃̇𝜃2 ; 
𝑣𝑣22 = 𝑚𝑚2𝑙𝑙1𝑙𝑙𝑐𝑐2sin (𝜃̇𝜃2)(2𝜃̇𝜃1 + 𝜃̇𝜃2); 
𝑔𝑔11 = (𝑚𝑚𝑚𝑚𝑐𝑐1 + 𝑚𝑚2𝑙𝑙1)𝑔𝑔 sin(𝜃𝜃1 ) −𝑚𝑚2𝑔𝑔𝑙𝑙𝑐𝑐2sin (𝜃𝜃1 + 𝜃𝜃2); 
𝑔𝑔22 =  𝑚𝑚2𝑔𝑔𝑙𝑙𝑐𝑐2sin (𝜃𝜃1 + 𝜃𝜃2); 

The motor-side dynamics (𝜃𝜃3 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃4) of the flexible-
joint robot are aslo derived using the Euler–Lagrange 
formulation, resulting in the following equations [1,27]: 

𝑱𝑱𝜽̈𝜽𝒎𝒎 + 𝑩𝑩𝒗𝒗𝜽𝜽𝒎𝒎 = 𝝉𝝉𝒎𝒎 − 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  (2) 
Where J is presented the motor-side inertia, 𝒃𝒃𝒗𝒗 is the 

rotor damping coefficient, 𝒌𝒌𝒕𝒕 represents the motor torque 
constant, and 𝒊𝒊 is the DC motor current. 

After establishing the mathematical model, we will 
conduct a linearization the system around the equilibrium 
point: 𝒙𝒙𝟎𝟎 = [𝜽𝜽𝟏𝟏𝒅𝒅,𝟎𝟎,𝜽𝜽𝟐𝟐𝒅𝒅,𝟎𝟎,𝜽𝜽𝟏𝟏𝒅𝒅,𝟎𝟎,𝜽𝜽𝟐𝟐𝒅𝒅,𝟎𝟎]𝑻𝑻, with the 
equation: 

𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩  (3) 
To facilitate the design of the linear optimal controller, 

the nonlinear state-space model in (4) must be linearized. 
In this study, instead of linearizing around a conventional 
zero-equilibrium, where the robot is at rest at the desire 
positions, we adopt a more rigorous approach by selecting 
a worst-case operating point. This strategy is particularly 
relevant for resource-constrained agricultural robotics, 
where the controller must remain robust under the most 
demanding dynamic conditions. 

An additional stability survey was conducted, 
analyzing both gain margins (GM) and phase margins 
(PM) across the manipulator’s workspace to identify the 
system's worst-case configuration [𝜽𝜽𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍;𝜽𝜽𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍]. This 
critical point, where the system exhibits its lowest stability 
margins, was strategically selected as the equilibrium point 
for Jacobian linearization. We consider five representative 
operating points were evaluated to determine this boundary 
condition: 

Table 1. Evaluating worst-case point open-loop 
system 

Operational 
point 

GM/PM  
Link 1 

GM/PM 
Link 2 

Analyst’s 
stability 

[0;0] 150.32 dB/ 
inf 

131.08 dB/ 
inf 

stable 

[
𝜋𝜋
4 ;
𝜋𝜋
4 ] 39.86 dB/ 

inf 
27.70 dB/ 

inf 
stable 

[0;
𝜋𝜋
2] 42.08 dB/ 

inf 
36.80 dB/ 
89.03 deg 

stable 

[
𝜋𝜋
2 ; 0] 150.32dB/ 

65.95deg 
-17.48 dB/
87.70 deg

Unstable/ 
worst-case 

[
𝜋𝜋
2 ;
𝜋𝜋
2] 39.02 dB/ 

-87.27 deg
130.52 dB/ 
94.73 deg 

Unstable 

Analysis reveals that the system exhibits instability at 
the configurations [π/2;0] and [π/2; π/2] due to negative 
gain margins. To ensure global stability under resource-
constrained agricultural conditions, this study strategically 
selected the configuration [π/2;0] as the equilibrium point 
for Jacobian matrix linearization. This selection is driven 
by the fact that the system is most unstable at this point, 
particularly with a negative gain margin of -17.48 dB at the 
second link. Moreover, the positioning precision of Link 2 
is the primary target for effective agricultural task 
execution, so prioritizing its stability at this critical 
boundary is essential. 

Consider the equilibrium point: 

𝒙𝒙𝟎𝟎 = �
𝝅𝝅
𝟐𝟐

,𝟎𝟎,𝟎𝟎,𝟎𝟎,
𝛑𝛑
𝟐𝟐

,𝟎𝟎,𝟎𝟎,𝟎𝟎�
𝑻𝑻

.  The state-space linearization equation: 
𝜟𝜟𝒙̇𝒙 = 𝑨𝑨𝚫𝚫𝒙𝒙 + 𝑩𝑩𝚫𝚫𝒖𝒖  (4) 

The state vector is defined as: 

𝑥𝑥𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
 𝑥𝑥6
𝑥𝑥7
 𝑥𝑥8⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜃𝜃1
𝜃𝜃1̇
𝜃𝜃2
𝜃𝜃2̇
𝜃𝜃3
 𝜃𝜃3̇
𝜃𝜃4
 𝜃𝜃4̇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

;(5) 

 and the control input is 𝑢𝑢 = [𝑖𝑖1, 𝑖𝑖2]𝑇𝑇 

Or more detail [1,27] the equation of system is 
described as below: 

𝒙𝒙𝟏̇𝟏  =  𝒙𝒙𝟐𝟐 
𝒙𝒙𝟐̇𝟐  =  −𝒑𝒑𝟏𝟏𝟏𝟏𝒌𝒌𝒃𝒃 𝒙𝒙𝟏𝟏  +  𝜶𝜶𝒙𝒙𝟐𝟐  −  𝒑𝒑𝟏𝟏𝟏𝟏𝒌𝒌𝒃𝒃𝒙𝒙𝟑𝟑  +
𝜷𝜷𝒙𝒙𝟒𝟒  +  𝒑𝒑𝟏𝟏𝟏𝟏𝒌𝒌𝒃𝒃 𝒙𝒙𝟓𝟓  +  𝒑𝒑𝟏𝟏𝟏𝟏𝒃𝒃𝒔𝒔𝒙𝒙𝟔𝟔  +
 𝒑𝒑𝟏𝟏𝟏𝟏 𝒌𝒌𝒃𝒃𝒙𝒙𝟕𝟕 + 𝒑𝒑𝟏𝟏𝟏𝟏 𝒃𝒃𝒔𝒔𝒙𝒙𝟖𝟖 −  𝒑𝒑𝟏𝟏𝟏𝟏𝒈𝒈𝟏𝟏 −  𝒑𝒑𝟏𝟏𝟏𝟏𝒈𝒈𝟐𝟐 . 
𝒙𝒙𝟑̇𝟑 =  𝒙𝒙𝟒𝟒 
𝒙𝒙𝟒̇𝟒  =  −𝒑𝒑𝟐𝟐𝟐𝟐𝒌𝒌𝒃𝒃𝒙𝒙𝟏𝟏  + 𝜸𝜸𝒙𝒙𝟐𝟐 −  𝒑𝒑𝟐𝟐𝟐𝟐𝒌𝒌𝒃𝒃 𝒙𝒙𝟑𝟑  +
𝜹𝜹 𝒙𝒙𝟒𝟒    +  𝒑𝒑𝟐𝟐𝟐𝟐𝒌𝒌𝒙𝒙𝟓𝟓  +  𝒑𝒑𝟐𝟐𝟐𝟐𝒃𝒃_𝒔𝒔𝒙𝒙𝟔𝟔  +
 𝒑𝒑𝟐𝟐𝟐𝟐𝒌𝒌 𝒙𝒙𝟕𝟕  +  𝒑𝒑𝟐𝟐𝟐𝟐 𝒃𝒃𝒔𝒔 𝒙𝒙𝟖𝟖    −  𝒑𝒑𝟐𝟐𝟐𝟐 𝒈𝒈𝟏𝟏  −
 𝒑𝒑𝟐𝟐𝟐𝟐𝒈𝒈𝟐𝟐. 

(6) 
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𝒙𝒙𝟓̇𝟓  =  𝒙𝒙𝟔𝟔 
𝒙𝒙𝟔̇𝟔  = 𝟏𝟏

𝑱𝑱
( −𝒌𝒌 𝒙𝒙𝟏𝟏  +  𝒃𝒃𝒔𝒔 𝒙𝒙𝟐𝟐  −  𝒌𝒌 𝒙𝒙𝟓𝟓  −

 (𝒃𝒃𝒗𝒗  +  𝒃𝒃𝒔𝒔)𝒙𝒙𝟔𝟔  +  𝒌𝒌𝒕𝒕 𝒊𝒊𝟏𝟏). 
𝒙𝒙𝟕̇𝟕  =  𝒙𝒙𝟖𝟖 
𝒙𝒙𝟖̇𝟖  = 𝟏𝟏

𝑱𝑱
( −𝒌𝒌 𝒙𝒙𝟑𝟑  +  𝒃𝒃𝒔𝒔𝒙𝒙𝟒𝟒  −  𝒌𝒌 𝒙𝒙𝟕𝟕  −

 (𝒃𝒃𝒗𝒗  +  𝒃𝒃𝒔𝒔)𝒙𝒙𝟖𝟖  +  𝒌𝒌𝒕𝒕 𝒊𝒊𝟐𝟐) . 

Where damping components are: 𝛼𝛼 = −𝑝𝑝11(𝑘𝑘𝑎𝑎 + 𝑏𝑏𝑠𝑠)  −
𝑝𝑝12𝑏𝑏𝑠𝑠, 𝛽𝛽 = 𝑝𝑝11bs − 𝑝𝑝12(𝑘𝑘𝑎𝑎 + 𝑏𝑏𝑠𝑠), 𝛾𝛾 = −𝑝𝑝21(𝑘𝑘𝑎𝑎 + 𝑏𝑏𝑠𝑠) −
𝑝𝑝22bs, 𝛿𝛿 = −𝑝𝑝22(𝑘𝑘𝑎𝑎 + 𝑏𝑏𝑠𝑠) + 𝑝𝑝21𝑏𝑏s;  and components of 
matrix 𝑃𝑃 = 𝑀𝑀−1 are calculated as below: 

𝑝𝑝11 =
𝑚𝑚22

−𝑚𝑚12𝑚𝑚21 + 𝑚𝑚11𝑚𝑚22
, 

 𝑝𝑝12 = −
𝑚𝑚12

−𝑚𝑚12𝑚𝑚21 + 𝑚𝑚11𝑚𝑚22
, 

 𝑝𝑝21 =
−𝑚𝑚21

−𝑚𝑚12𝑚𝑚21 + 𝑚𝑚11𝑚𝑚22
, 𝑝𝑝22 =

𝑚𝑚11

−𝑚𝑚12𝑚𝑚21 + 𝑚𝑚11𝑚𝑚22
 

In summary, the 8th-order dynamic model presented 
in this section provides a comprehensive and rigorous 
representation of the 2-DOF flexible-joint manipulator. By 
systematically deriving the link-side and motor-side 
equations, this work clarifies and improves upon 
inconsistencies regarding symbol conventions and 
structural matrices found in previous literature [1, 27]. 
Furthermore, by linearizing the system at the identified 
worst-case operating point, this refined model serves as a 
robust mathematical foundation for the development of the 
LQR-KI control strategy. This approach ensures that the 
subsequent control design remains stable and energy-
efficient under the most precarious agricultural operating 
conditions. 

 

3.2 Proposed Control: Robust LQR-KI 

The position control of the motor links and motor 
shafts is implemented via the input current  𝑈𝑈 = [𝑈𝑈1 𝑈𝑈2]𝑇𝑇 . 
The motor torque 𝜏𝜏 = 𝑘𝑘𝑡𝑡𝑖𝑖 introducing the control input 
through the motor current modifies the motor-side 
dynamics in (4). By replacing 𝑖𝑖1 = 𝑈𝑈1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖2 = 𝑈𝑈2 into the 
system equations (6), the coupled link–motor dynamics can 
be rewritten in the following state-space equations 

: 
𝒙𝒙𝟔̇𝟔 = 𝟏𝟏

𝑱𝑱
 ( −𝒌𝒌 𝒙𝒙𝟏𝟏  +  𝒃𝒃𝒔𝒔 𝒙𝒙𝟐𝟐  −  𝒌𝒌 𝒙𝒙𝟓𝟓  −

 (𝒃𝒃𝒗𝒗  +  𝒃𝒃𝒔𝒔)𝒙𝒙𝟔𝟔  +  𝒌𝒌𝒕𝒕 𝑼𝑼𝟏𝟏 ). 
𝒙𝒙𝟖̇𝟖  = 𝟏𝟏

𝑱𝑱
( −𝒌𝒌 𝒙𝒙𝟑𝟑  +  𝒃𝒃𝒔𝒔 𝒙𝒙𝟒𝟒  −  𝒌𝒌 𝒙𝒙𝟕𝟕  −

 (𝒃𝒃𝒗𝒗  +  𝒃𝒃𝒔𝒔)𝒙𝒙𝟖𝟖  +  𝒌𝒌𝒕𝒕 𝑼𝑼𝟐𝟐 ). 

(7) 

This controlled state-space model serves as the 
foundation for the hybrid LQR–KI control strategy. 

 

Fig.  2. LQR block diagram 

In this study, a Linear Quadratic Regulator (LQR) is 
applied to calculate the optimal proportional and derivative 
gains for the 8th-order linearized state-space model. The 
primary objective is to design an optimal cost function, J, 
that balances trajectory tracking accuracy and energy 
consumption efficiency. The LQR framework minimizes 
the following cost function 

𝑱𝑱 = 𝟏𝟏
𝟐𝟐 ∫ (𝒆𝒆𝑻𝑻𝑸𝑸𝑸𝑸 + 𝒖𝒖𝑻𝑻𝑹𝑹𝑹𝑹)𝒅𝒅𝒅𝒅∞

𝒕𝒕𝟎𝟎
  (8) 

Where Q and R are positive-definite weighting 
matrices selected to penalize state deviations and control 
effort, respectively. The optimal feedback gain matrix K is 
determined by solving the Algebraic Riccati Equation 
(ARE) 

𝑨𝑨𝑻𝑻𝑷𝑷 + 𝑷𝑷𝑷𝑷 − 𝑷𝑷𝑷𝑷𝑹𝑹−𝟏𝟏𝑩𝑩𝑻𝑻𝑷𝑷 + 𝑸𝑸 = 𝟎𝟎 (9) 

The resulting optimal gain matrix is computed as:  
𝑲𝑲 = 𝑹𝑹−𝟏𝟏𝑩𝑩𝑻𝑻𝑷𝑷   (10) 

In this 8th-order configuration, the odd-indexed gains 
(𝐾𝐾1,3,5,7) are mapped to the proportional components, 
while the even-indexed gains (𝐾𝐾2,4,6,8) are mapped to the 
derivative components of the state-feedback law. This 
optimal tuning is a critical step before introducing the 
integral action, as it establishes a high-performance 
baseline for vibration suppression and energy-efficient 
positioning in agricultural tasking. 

Fundamentally, the LQR design process for the 8th-
order model optimizes the proportional and derivative 
gains, effectively functioning as an optimal PD controller 
where the feedback matrix K maps to the system's velocity 
and position states. However, a standard PD structure often 
fails to eliminate steady-state errors caused by gravitational 
torques and non-ideal agricultural disturbances without a 
complex feedforward compensator. 

To ensure robust tracking and disturbance elimination, 
this study proposes an extended model derived from the 8-
state variable model (4) with the addition of position error 
integral states. By augmenting the state vector to a 10th-
order system, the controller can thoroughly resolve 
remaining offsets and autonomously compensate for non-
ideal excitations. This approach contributes to creating an 
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optimal and consistent control architecture that maintains 
high precision, achieving a good positioning accuracy. 

The state vector is augmented as follows: 

𝒙𝒙𝒂𝒂𝒂𝒂𝒂𝒂 = �𝒙𝒙𝒛𝒛� =
[𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑,𝒙𝒙𝟒𝟒,𝒙𝒙𝟓𝟓,𝒙𝒙𝟔𝟔,𝒙𝒙𝟕𝟕,𝒙𝒙𝟖𝟖,∫ 𝒆𝒆𝟏𝟏𝒅𝒅𝒅𝒅 ,∫𝒆𝒆𝟐𝟐𝒅𝒅𝒅𝒅]𝑻𝑻 (11) 

Where 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2]𝑇𝑇 represents the integral of the 
positioning errors for link 1 and link 2. The resulting 10th-
order augmented state-space system is described by: 

𝒙̇𝒙𝒂𝒂𝒂𝒂𝒂𝒂 = 𝑨𝑨�𝒙𝒙𝒂𝒂𝒂𝒂𝒂𝒂 + 𝑩𝑩�𝒖𝒖   (12) 
The augmented system matrices 𝐴̂𝐴 and 𝐵𝐵�  are 

constructed as: 

𝑨𝑨� = � 𝑨𝑨 𝟎𝟎𝟖𝟖×𝟐𝟐
𝑪𝑪𝑪𝑪 𝟎𝟎𝟐𝟐×𝟐𝟐

� ,𝑩𝑩� = � 𝑩𝑩
𝟎𝟎𝟐𝟐×𝟐𝟐

� (13) 

In this formulation, A and B are the Jacobian matrices 
linearized at the worst-case operating point [π/2;0], and 
𝐶𝐶_𝑞𝑞 is the output matrix that extracts the positioning errors 
of the links. By solving the Algebraic Riccati Equation for 
this augmented system, the optimal gain matrix 𝐾𝐾� =
[𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿|𝐾𝐾𝑖𝑖]  is obtained.  

3.3 Stability analysis via observation of poles 

distribution. 

Fig.  3. Poles of close-loop system 

The closed-loop pole-zero map provides a clear validation 
of the proposed LQR-KI controller's effectiveness. Key 
observations are summarized as follows: 

Global Asymptotic Stability: All ten closed-loop poles 
are strictly located in the left-half of the complex plane, 
confirming that the system achieves robust stability even at 
the worst-case configuration [π/2;0]. 

Ultra-Fast Actuator Response: The presence of deep 
real poles at −5.2 × 10−5 demonstrates the controller's 
ability to react instantaneously to motor torque fluctuations 
and current dynamics. 

Effective Vibration Damping: The complex conjugate 
pairs (−2.3 ±  3. 𝑖𝑖) indicates negative real components, 
indicating that the LQR-KI scheme effectively suppresses 
elastic oscillations from the flexible joints (𝑘𝑘𝑏𝑏 = 400, 𝑏𝑏𝑠𝑠 =
520). 

Integral Action Efficiency: The dominant poles near 
the imaginary axis confirm that the integral action (𝐾𝐾𝐼𝐼) 
eliminates steady-state errors without inducing excessive 
overshoot or undesirable oscillations. 

In conclusion, these results show a promising and 
reliable foundation for a robust control structure, that the 
proposed LQR-KI controller provides the stability to the 
harsh and unpredictable disturbances in agricultural 
environments. This mathematical validation provides a 
high level of confidence in the controller's ability to 
maintain precision and operational integrity under extreme 
field conditions. 

4. Numerical Simulation

The following parameters are used for the numerical
simulations:𝑚𝑚1 =  𝑚𝑚2 = 10, 𝑙𝑙1 =  𝑙𝑙2 = 0.8,𝑔𝑔 =
9.81,𝑘𝑘𝑏𝑏 = 400, 𝑏𝑏𝑠𝑠 = 520, 𝑘𝑘𝑎𝑎 = 5, 𝑏𝑏𝑣𝑣 = 0.02, 𝐽𝐽 =
0.02,𝑘𝑘𝑡𝑡 = 0.8. The initial conditions 𝑥𝑥1,..,8(0) = 0. 

Three simulation scenarios are considered to evaluate 
the performance of the proposed controller. In the first 
scenario, both links are positioned at fixed reference points. 
In the second scenario, the first link and second link are 
moving under disturbance. In the third scenario, this study 
conducts a validation to compare the energy consumption 
between flexible joint and rigid-joint under disturbance 
excitation. 
The weighting matrices Q and R used in the LQR design, 
together with the system matrices A and B, are provided in 
the appendix. 

4.1 Position Control for Fixed Points 
In the first simulation scenario, both links are 

commanded to reach fixed reference points under ideal 
conditions to evaluate steady-state accuracy. 

Considering the desired states 𝑥𝑥�1 = 𝑥𝑥�5 = 𝜋𝜋
2

; 𝑥𝑥�3 =
𝑥𝑥�7 = 𝜋𝜋

4
; 𝑥𝑥�2 = 𝑥𝑥�4 = 𝑥𝑥�6 = 𝑥𝑥�8 = 0.
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Fig.  4. Positioning error for LQR control; for error for 
𝜃𝜃1,𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃4,   

 

 

Fig.  5.  Positioning error for LQR control with KI 
control; for error for 𝜽𝜽𝟏𝟏,𝜽𝜽𝟐𝟐, 𝜽𝜽𝟑𝟑, 𝜽𝜽𝟒𝟒.  

To evaluate the system's response in greater detail, a 
comparative analysis was conducted using the Root Mean 
Square Error (RMSE) metric. 

Table 2. RMSE in case without vibration excitation 

Ele-ments  K_LQR K_LQR+KI 
Link 1 0.299984 0.000000 
Link 2  0.066242 0.000000 
Motor 1 0.070402 0.363295 
Motor 2 0.023273 0.069296 

LQR Control (PD-based): As illustrated in Fig. 4, the 
standard LQR controller (functioning as an optimal PD 
regulator) fails to eliminate the steady-state error, 
particularly for the links. Due to the uncompensated 
gravitational torques and joint elasticity, link 1 exhibits a 
significant residual offset with an RMSE of approximately 
~0.3 rad. 

LQR-KI Control (Proposed): In contrast, Fig. 5 
demonstrates that the proposed LQR-KI controller 
effectively drives the positioning errors of both Link 1 and 
Link 2 to zero (0.000000 RMSE). 

Conclusion: The addition of the integral states 
successfully solves the problem for the non-linear 
gravitational effects without requiring a complex 
feedforward model. [1, 27]. 

 
 
4.2 Position Control under vibration 
disturbance 
 

In this case, we consider the desired condition: 𝑥𝑥�1 =
𝑥𝑥�5 = 𝜋𝜋

2
, 𝑥𝑥�3 = 𝑥𝑥�7 = 𝜋𝜋

4
, with a non-ideal source excitation to 

the link 1. A source Z=0.01sin100t is added to 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 as 
disturbance from displacement, z = 0.01cost is added to 
𝜃̇𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1from velocity. This is seen as the system is subjected 
to non-ideal vibrations to simulate harsh agricultural field 
conditions. A rotational motion representing an unbalanced 
motor mass is injected as a disturbance to evaluate the 
robustness of the control strategies 

Fig.  6 Disturbance input to link and motor 1 
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Fig.  7. Positioning error for LQR control for error for 
𝜃𝜃1,𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃4,  

 

Fig.  8. Positioning error for LQR control with KI 
control; error for 𝜃𝜃1,𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃4,  

 
 

Table 3. RMSE in case vibration excitation 

Elements  K_LQR K_LQR+KI 
Link 1 0.342556 0.106650 
Link 2  0.104594 0.036836 
Motor 1 0.193504 0.338017 
Motor 2 0.086688 0.063467 

Vibration Rejection Analysis: As illustrated in Fig. 7, 
the standard LQR controller exhibits significant oscillating 
errors, struggling to suppress the link vibrations caused by 
the external excitation. The RMSE for Link 1 under 
standard LQR reaches a high value of 0.481502 rad. 

Performance of Proposed LQR-KI: In contrast, Fig. 8 
shows that the LQR-KI controller significantly suppresses 

these oscillations. By utilizing the integral action within the 
augmented state-space framework, the RMSE for Link 1 is 
reduced by nearly 3 times, down to 0.1 rad. Similarly, the 
Link 2 RMSE improves from ~0.1 rad to ~0.03 rad. 

Stability and accuracy: This superior disturbance 
rejection is achieved while maintaining the closed-loop 
poles strictly in the left-half plane, even at the worst-case 
configuration. Moreover, the error totally approximates 2% 
of the operational range (~0.03/1.54). This achievement is 
considered a "golden result" in the control field, especially 
for flexible-joint manipulators operating under high-
frequency disturbances (100 rad/s). 

 
4.3. Energy Efficiency Validation 

 
In this scenario, we will make a simple rigid model 

by change stiffness and damping of joints into very high 
value. 
 

 

Fig.  9. Energy tracking in case flexible joints 

 

Fig.  10. Energy tracking in case rigid joints 
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Table 4. Energy consumption 

Elements Rigid joints 
(unit torque) 

Float joints 
(unit torque) 

Improve-
ments (%) 

Motor 1 192.06 180.89 5.81 
Motor 2 49.52 38.07 23.12 
Totally 241.58 218.96 9.36 

 
 
The most significant finding of this study is the energy 

performance of the flexible-joint configuration under 
LQR-KI control. By exploiting the natural compliance of 
the joints and optimizing the control effort through the 
LQR cost function J, the system achieves an energy saving 
of approximately 9.36% compared to a conventional rigid-
link system performing the same task. This confirms that 
the proposed model and controller is not only robust but 
also highly suitable for sustainable, battery-powered 
agricultural platforms. 

5. Conclusion 
 

The simulation results and stability analysis offer 
multi-dimensional perspectives on the effectiveness of the 
proposed LQR-KI strategy for flexible-joint manipulators 
in agricultural fields. This research has been demonstrated 
that: 

Robust Precision: The LQR-KI scheme achieves a 
positioning error of less than 2%, effectively suppressing 
disturbances of 100 rad/s without complex feedforward 
terms. 

Efficiency: The system achieves a verified 9.36% 
reduction in total energy consumption, supporting the 
feasibility of sustainable robotic platforms. 

Guaranteed Stability: Eigenvalue analysis confirms 
global asymptotic stability, with closed-loop poles 
strategically placed to handle extreme field excitations.  

 
6. Discussion on Energy and Mechanical 
Dynamics 
 

The most significant finding is the 9.36% energy 
saving achieved by the flexible-joint configuration 
compared to the rigid-joint model. Fundamentally, a 
flexible joint acts as a natural low-pass filter. In the context 
of operation in an agricultural environment and affected by 
complex vibration disturbances, its physical compliance 
naturally absorbs high-frequency vibrations and reduces 
the impact of non-ideal excitations. While this mechanical 
property provides partial disturbance rejection, the robust 
LQR-KI controller contributes to enhancing the accuracy 
also the effeciency. By linearizing at the worst-case point 
and utilizing an augmented state-space, the controller 
eliminates the need for real-time re-linearization across the 

entire workspace. This fixed-gain approach significantly 
optimizes computational resources, making it highly 
suitable for low-power microcontrollers (e.g., STM32) that 
can operate without complex Gain Scheduling or 
Feedforward models. This synergy is crucial for 
agricultural environments, where battery-powered robots 
must maintain high accuracy under harsh conditions while 
minimizing power consumption. 

 
Future work will focus on validating this control 

architecture using a Hardware-in-the-Loop (HIL) 
framework. In this approach, the refined 8th-order 
dynamics will be executed on a real-time simulator, while 
the hybrid control algorithm will be embedded into an 
industrial-grade microcontroller (e.g., STM32). This setup 
will allow for the evaluation of real-time constraints, such 
as sampling latency and signal quantization, ensuring the 
system's reliability for unpredictable agricultural field 
operations. 
 
7. Appendix 

 
The state-space matrix A, B as below: 
 

Matrix A (standard): 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
−𝟐𝟐𝟐𝟐𝟐𝟐 −𝟑𝟑𝟑𝟑𝟑𝟑.𝟏𝟏𝟏𝟏 𝟕𝟕𝟕𝟕𝟕𝟕 𝟗𝟗𝟗𝟗𝟗𝟗.𝟑𝟑𝟑𝟑 𝟐𝟐𝟐𝟐𝟐𝟐 𝟑𝟑𝟑𝟑𝟑𝟑 −𝟕𝟕𝟕𝟕𝟕𝟕 −𝟗𝟗𝟗𝟗𝟗𝟗
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟕𝟕𝟕𝟕𝟕𝟕 𝟗𝟗𝟗𝟗𝟗𝟗.𝟑𝟑𝟑𝟑 −𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 −𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑.𝟑𝟑 −𝟕𝟕𝟕𝟕𝟕𝟕 −𝟗𝟗𝟗𝟗𝟗𝟗 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎

𝟒𝟒 × 𝟏𝟏𝟎𝟎𝟓𝟓 𝟓𝟓.𝟐𝟐 × 𝟏𝟏𝟎𝟎𝟓𝟓 𝟎𝟎 𝟎𝟎 −𝟒𝟒 × 𝟏𝟏𝟎𝟎𝟓𝟓 −𝟓𝟓.𝟐𝟐 × 𝟏𝟏𝟎𝟎𝟓𝟓 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟎𝟎 𝟒𝟒 × 𝟏𝟏𝟏𝟏𝟓𝟓 𝟓𝟓.𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟓𝟓 𝟎𝟎 𝟎𝟎 −𝟒𝟒 × 𝟏𝟏𝟎𝟎𝟓𝟓 −𝟓𝟓.𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟓𝟓⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Matrix B (standard): 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟖𝟖𝟖𝟖𝟖𝟖 𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟖𝟖𝟖𝟖𝟖𝟖⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Vector 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿: 
 
�𝟔𝟔𝟔𝟔𝟔𝟔.𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗 −𝟑𝟑.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟑𝟑𝟑𝟑.𝟎𝟎𝟎𝟎𝟎𝟎 𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 −𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔𝟔𝟔 𝟑𝟑𝟑𝟑.𝟔𝟔𝟔𝟔𝟔𝟔 𝟏𝟏𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗 𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐𝟐𝟐 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎� 

 
Vector 𝐾𝐾𝐼𝐼: 

�𝟗𝟗𝟗𝟗𝟗𝟗.𝟓𝟓𝟓𝟓 −𝟐𝟐𝟐𝟐𝟐𝟐.𝟐𝟐𝟐𝟐
𝟏𝟏𝟏𝟏𝟏𝟏.𝟑𝟑 𝟒𝟒𝟒𝟒𝟒𝟒.𝟖𝟖𝟖𝟖 � 

Matrix Q (extend): 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝟏𝟏𝟎𝟎

𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏𝟎𝟎𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏𝟎𝟎𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏𝟎𝟎𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏𝟎𝟎𝟒𝟒 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏𝟎𝟎𝟒𝟒⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Matrix R: 

�𝟎𝟎.𝟎𝟎𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎.𝟎𝟎𝟎𝟎� 
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Table 5. Total Poles of the closed-loop system 

Poles The located position 
1 -0.76922 
2 -0.76924 
3 -2.3476 + 3.0021i 
4 -2.3476 - 3.0021i   
5 -2.73    
6 -3.2036 
7 -17.8 
8 -49.103 
9 -5.2011e+05 
10 -5.2358e+05 
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