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Abstract 

Sensor-based safety monitoring systems play an important role in early detection and prevention of fire and explosion 
incidents at industrial pumping stations. Modern stations integrate multiple sensors such as temperature, humidity, gas, dust, 
air quality and fire sensors to assess operational status. In practice, continuous monitoring and coordinated analysis of multi-
sensor data conducted by experienced professionals can significantly reduce the risk of fire and explosion. However, 
sustaining continuous expert-based monitoring is challenging due to high operational costs, manpower demands, and 
practical constraints. Consequently, automated monitoring and forecasting systems are required to deliver continuous and 
timely risk assessments while minimizing dependence on manual supervision. However, sensor signals often contain noise 
that is nonlinear and susceptible to environmental influences, making traditional threshold comparison methods unstable. 
This paper proposes a fire monitoring and forecasting system based on time series data and deep learning model with three 
status levels including safe, warning and dangerous. The models used and compared include decision trees, artificial neural 
networks, and long short-term memory networks with a twelve-step time window. Multi-sensor data are normalized and 
organized into time series windows to reduce noise and reflect fluctuations in real-world conditions. Experimental results 
on sensor data collected at the pumping station show that the long short-term memory network achieves higher accuracy and 
precision than the other two models. Contributing to improving the reliability of safety monitoring at the pumping station 
and creating a basis for practical implementation. 
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1. Introduction

Fire and explosion are among the most dangerous incidents 
in the industrial environment, which can cause great 
damage to property, disrupt production and directly 
threaten human safety. In areas containing flammable fuels 
or gases, the risk is even higher due to the rapid and 
difficult-to-control spread, so monitoring and early 
warning systems play a key role in promptly detecting 
unusual signs before an incident occurs. In the early stages, 
fire alarm systems relied mainly on single sensor  
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thresholds, such as modeling the relationship between hot 
air flow and the thermal response of a detector [1] or optical 
obscuration thresholds for smoke detectors [2-3]. The 
physical properties of smoke including particle size, optical 
density and aging process have been analyzed in [4], and 
even in large spaces, threshold-based binary classification 
method is still widely applied [5]. However, threshold-
based models are susceptible to environmental background 
noise and increase the false alarm rate. 

As the need to reduce false positives became more 
urgent, more traditional machine learning methods began 
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to be investigated. For example, Support Vector Machines 
(SVM) [6] allow the combination of multiple measurement 
sources including heat, smoke, toxic gases, and humidity to 
improve accuracy. High-dimensional sensor fusion [7], 
fuzzy inference [8], and evidence fusion [9] methods help 
smooth the response in the transition region. Reviews such 
as building research establishment (BRE) [10] and studies 
in [11] show that machine learning can significantly reduce 
false positives, although most systems still stop at binary 
classification. Decision tree models are exploited in [12] to 
describe risk variation with environmental conditions and 
in [13] as an explanatory tool to identify abnormal trends 
before thresholds are exceeded. The development of the 
Internet of Things opens up the possibility of continuous 
sensor data collection, thereby facilitating the application 
of deep learning models in time series analysis. Research 
[14] shows that long-short-term memory networks have
long-term memory capabilities and limited gradient loss,
thus suitable for describing temporal dependencies in fire
signals. Extensive studies [15-16] also demonstrate that
long short-term memory networks are more stable than
traditional Recurrent Neural Network (RNN) variants
when the environment contains a lot of noise. In Vietnam,
most fire alarm systems are still based on thresholds [17],
although TCVN 5738:2021 [18] standard has raised the
requirements for detector performance. Recent studies
using ESP32 and ESP8266 microcontroller platforms [19-
20] have begun to build continuous sensor data warehouses
for deep learning models. In parallel, decision tree models
used in forest fire spatial risk classification [21-22], multi-
layer feedforward models for nonlinear classification
problems [23], autoencoders in unlabeled anomaly
detection [24], and simple RNN variants in [25] also
demonstrated the ability to predict trends before thresholds
are exceeded.

In summary, although there have been many different 
approaches, most studies still focus on binary classification 
or have not fully exploited the time series nature of sensor 
data. This raises the need to develop a more stable multi-
risk monitoring and forecasting system in noisy 
environments. On that basis, the paper focuses on 
developing a solution to monitor and forecast fire and 
explosion risks for fuel pumping stations, exploiting real-
time sensor data combined with deep learning models to 
identify abnormal conditions early, thereby supporting 
timely warnings and minimizing risks in operations. The 
main contributions of the paper include: 

(1) Building an experimental model of a pumping
station and a multi-sensor Internet of Things system
to collect real-time data.

(2) Propose a process for processing and organizing
time series data, and develop decision tree, artificial
neural network and short-term memory
classification models for three risk levels.

(3) Organize training and experimental evaluation
based on collected results with many criteria to
clearly show the effectiveness of each model, and
at the same time propose a model combination
direction to improve the reliability of the system.

The structure of this paper is distributed as follows: 
Section 2 presents the methodology, including data 
collection and storage, the overview of the proposed 
model, the model evaluation criteria, and quantitative 
thresholding. Section 3 provides the algorithm of the 
training models; experimental and evaluation results are 
provided in section 4. Section 5 will give conclusions for 
the research. 

2. Proposed method

Traditional fire alarm studies are mainly based on response 
models of heat and smoke detectors, in which thresholds 
are set based on optical obscuration, smoke density, or hot 
air flow propagation characteristics. Although suitable in 
simple environments, these threshold-based systems are 
susceptible to environmental noise, causing false alarm 
rates to increase significantly when background conditions 
change or smoke signals are weak and unevenly dispersed. 
The emergence of Internet of Things systems makes sensor 
data collection more continuous and richer, facilitating the 
application of machine learning methods such as SVM, 
decision trees, fuzzy inference, and evidence fusion. The 
development of deep learning, especially RNN and LSTM 
models, opens up the possibility of modeling long-term 
dependencies in noisy and complex data. However, most 
fire alarm systems are still threshold-based or employ 
simple machine learning models. 

On that basis, the paper proposes a fire and explosion 
risk monitoring and forecasting system for fuel pumping 
stations based on real-time sensor data and deep learning 
models. The multi-sensor data mining system is organized 
in the form of time series and compares three methods DT, 
ANN and LSTM to classify risks into three levels including 
safety, warning and danger. This method aims to increase 
the accuracy and stability of the warning system under real 
operating conditions. The system is deployed on a 
miniature industrial pumping station model, including 
pump cluster, pipeline, fuel storage area and control 
cabinet in Figure 1. Sensors are strategically installed at 
critical leak-prone locations, such as control valve joints, 
pump heads, flexible joints, and pump room ceilings, to 
enable continuous acquisition of environmental 
parameters: temperature and humidity reflect the risk of 
overheating, MQ2 and MP2 record changes in combustible 
gas, pressure or fluctuations related to leaks or smoldering, 
MQ135 serves to assess air quality and flame sensors detect 
infrared radiation. 

Signals from sensors are read periodically through the 
ATmega328 microcontroller, pre-processed and 
transmitted to the computer via the ESP8266 module. The 
computer performs two main functions including training 
DT, ANN and LSTM models from historical data and real-
time inference to determine the risk level, thereby 
triggering warnings such as buzzers, display interfaces or 
sending messages, emails and phone calls. To apply to deep 
learning models, the collected data is grouped and 
organized into a three-dimensional data matrix including 
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time axis, sensor axis and number of samples. This matrix 
form supports well the preprocessing steps and time series 
analysis, especially for LSTM models that need to group 
data in consecutive windows. Data collected continuously 

from sensors is saved as CSV files and data processing is 
done in Python language on PyCharm software platform 
with Pandas, Scikit learn and TensorFlow Keras libraries. 

Figure 1. Fire monitoring and forecasting system model 

2.1. Collect and store data 

Sensor data were collected from a miniature fuel station 
equipped with multiple environmental sensors, including 
temperature, humidity, flammable gas, smoke, air quality, 
and flame detection sensors. These sensors were interfaced 
with embedded nodes based on Arduino and ESP8266 
platforms, which periodically acquired sensor readings and 
transmitted the data wirelessly to a central processing 
computer. 

At the receiving end, the incoming data stream is 
recorded and continuously stored in a structured file format 
together with corresponding timestamps. This storage 
strategy ensures the integrity and traceability of the time-
series data and provides a reliable data source for 
subsequent preprocessing, data partitioning, and model 
training procedures described in the following sections. 

2.2. Collect and store data 

The pre-processing process includes the following main 
steps: 

• Raw preprocessing: normalize column names, convert 
flame sensor signals to binary, cast data types, and
remove missing, duplicate, or outlier values.

• Feature normalization: sensor signals are normalized
by z-score or MinMaxScaler to bring the data to the
same scale and help the learning model to be more
stable.

• Time series organization: data is cut into sliding
windows. For DT and ANN, a one-step window is
used; for LSTM, a twelve-step window times six
features are used. Labels are assigned according to the
last sample of each series with three levels including
Safe 0, Warning 1, and Danger 2.

• Data splitting: data is split into 70 % training, 15 %
validation, and 15 % testing, ensuring uniform class
distribution.

• Setting the warning threshold: from the predicted
probabilities p0, p1 and p2 on the testing set, the
quantity p unsafe is constructed to select the tau
threshold to balance between low false alarm rate and
good recall ability for dangerous situations.

After preprocessing, the data is organized into vectors or 
time series depending on the model used. With DT and 
ANN, each input sample is a vector of 6 features: 

𝑥𝑥 = (temp, hum, mq2, mp2, mq135, flame) (1) 

For the LSTM model, the data is formed into 12 x 6 time 
series windows. The sensor system operates with a fixed 
sampling interval; in the experiments, the sampling period 
was set to approximately 2 seconds per sample. 
Consequently, the 12-step input window of the LSTM 
model corresponds to an observation duration of about 24 
seconds, enabling the model to capture temporal trends and 
risk accumulation over time while maintaining a prediction 
latency suitable for early-warning applications. The label 
of each sample belongs to one of three levels including Safe 
0, Warning 1 and Danger 2. The dataset is divided in the 
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ratio of 70 % for training, 15 % for validation and 15 % for 
testing. 

2.3. Collect and store data 

The performance of the proposed models was evaluated 
using standard classification metrics, including accuracy, 
precision, recall, and confusion matrix analysis, in 
combination with time-series smoothing techniques and 
hysteresis rules. These metrics are well suited for assessing 
multi-level risk classification performance under noisy 
sensor data conditions. 

• Accuracy:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
(2) 

In there, TP is the number of samples belonging to the 
class to be detected and predicted correctly, TN is the 
number of samples not belonging to that class and 
predicted correctly, FP is the number of samples not 
belonging to the class but predicted incorrectly, and FN is 
the number of samples belonging to that class but missed. 
In the multi-class classification of Safety, Warning and 
Danger, when considering class 𝑖𝑖, we always consider class 
𝑖𝑖 as positive and the other two classes as negative. 

• Precision of class 𝑖𝑖:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖 =
𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑃𝑃𝑖𝑖
(3) 

In there, 𝑇𝑇𝑃𝑃𝑖𝑖  is the number of correctly predicted 
samples of class 𝑖𝑖, and 𝐹𝐹𝑃𝑃𝑖𝑖  is the number of samples that 
do not belong to class 𝑖𝑖 but are mistakenly predicted to 
belong to class 𝑖𝑖. 

• Recall of class 𝑖𝑖:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑖𝑖 =
𝑇𝑇𝑃𝑃𝑖𝑖

𝑇𝑇𝑃𝑃𝑖𝑖 + 𝐹𝐹𝑁𝑁𝑖𝑖
 (4)

In there, 𝐹𝐹𝑁𝑁𝑖𝑖 is the number of missed samples of class i. 

• Confusion Matrix:

𝐶𝐶𝐶𝐶 = �
𝑁𝑁00 𝑁𝑁01 𝑁𝑁02
𝑁𝑁10 𝑁𝑁11 𝑁𝑁12
𝑁𝑁20 𝑁𝑁21 𝑁𝑁22

� (5) 

In there, 𝑁𝑁𝑖𝑖𝑖𝑖 is number of actual samples belonging to 
class 𝑖𝑖, but the model predicted class 𝑗𝑗, 𝑁𝑁01 is Safe samples 
predicted to be Warning, and 𝑁𝑁22 is Dangerous samples 
predicted correctly. 

• Smoothing time series:

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑡𝑡) = 𝛼𝛼 𝑝𝑝(𝑡𝑡) + (1 − 𝛼𝛼)𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑡𝑡 − 1) (6) 
In there, 𝑝𝑝(𝑡𝑡) is the predicted probability at time 𝑡𝑡, 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑡𝑡) is the probability after smoothing, 𝛼𝛼 is the 

smoothing coefficient in the range zero point ten to zero 
point three, and low alpha values smooth more, high alphas 
react faster. 

• Hysteresis rules for risk labeling:

𝑦𝑦�(𝑡𝑡) = �
2 if  𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) > 𝜏𝜏2
1 if  𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) > 𝜏𝜏1
0 opposite

 (7) 

In there, 𝑦𝑦�(𝑡𝑡) is the risk label at time 𝑡𝑡,  𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) is 
the probability that the sample belongs to the unsafe group. 
𝜏𝜏2 is the threshold for triggering danger, 𝜏𝜏1 is the threshold 
for triggering warning, and hysteresis avoids continuous 
label fluctuations in transition regions. 

2.4. Quantitative thresholding 

In this study, each time-series window is labeled according 
to the risk state at its final sample to facilitate early risk 
prediction. A safe state is assigned when all sensor signals 
at this time remain within normal operating ranges and no 
flame signal is detected, whereas an alert state is assigned 
when at least one sensor exceeds the alert threshold without 
reaching a dangerous level. In transitional regions, where 
sensor values fluctuate near decision thresholds or 
demonstrate an increasing temporal trend, a priority-based 
labeling principle is applied. 

The labeling rules are implemented as follows: 

• Safe state:

𝑦𝑦(𝑡𝑡) = 0 if (∀𝑖𝑖: 𝑥𝑥𝑖𝑖(𝑡𝑡) < 𝑇𝑇𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) ∧ 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 0 (8) 

• Warm state:

𝑦𝑦(𝑡𝑡) = 1 if �∃𝑖𝑖:𝑇𝑇𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ≤ 𝑥𝑥𝑖𝑖(𝑡𝑡) < 𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� ∧ 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 0 
(9) 

• Dangerous state:

𝑦𝑦(𝑡𝑡) = 2 if �∃𝑖𝑖: 𝑥𝑥𝑖𝑖(𝑡𝑡) ≥ 𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� ∨

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 1 
(10) 

In there, 𝑥𝑥𝑖𝑖(𝑡𝑡) is the measurement of the 𝑖𝑖-th sensor at 
the last time step, 𝑇𝑇𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 denotes the warning threshold of 
the 𝑖𝑖-th sensor, 𝑇𝑇𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  denotes the danger threshold of the 
𝑖𝑖-th sensor, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) ∈ {0,1} denotes the flame sensor 
signal at the final sample, and y(t) denotes the risk label of 
the time series. 

3. Fire monitoring and forecasting
system model

3.1. Decision tree model 
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Figure 2. Decision tree structure after training 

The decision tree model is chosen for its simplicity, fast 
inference speed and intuitive interpretation, suitable for 
real-time warning systems. Each data sample is classified 
by going through the branching nodes, feature selection 
model and splitting threshold to reduce the chaos of the 
data set at each node. 

The index used is the Gini measure, which is defined as 
follows: 

𝐺𝐺 = 1 −�𝑝𝑝𝑖𝑖2
𝐶𝐶

𝑖𝑖=1

 (11) 

In which, 𝑝𝑝𝑖𝑖  is the proportion of samples belonging to 
class 𝑖𝑖 at the node under consideration. 

The model receives as input 6 sensor features and 3 class 
labels. The decision tree is trained using the classification 
and regression trees (CART) algorithm with the maximum 

depth parameter adjusted during testing to avoid 
overfitting. After training, the tree structure allows for 
visual identification of the conditions leading to each risk 
level, supporting the interpretation of the model's decisions 
in an industrial context, as presented in Figure 2 and 
Algorithm 1. 

Algorithm 1: Training the DT model 

Input The training dataset consists of 
feature vectors and labels.

Output Trained DT model and evaluation
metrics. 

1. Initialization: The root node contains all
the data.

2. Calculate the Gini index ← (11).

3. Try possible separation thresholds for
each feature.

4. Choose the threshold that gives the
largest Gini reduction.

5. Split the data into two sub-branches.

6. Stop when the node reaches homogeneity or
the depth exceeds a threshold.

7. Output model evaluation results, model and
test set predictions.

8. End

3.2. Artificial Neural Network 

Artificial neural networks are used to model the nonlinear 
relationship between sensor signals and the safety status of 
the pumping station. Unlike the decision tree model based 
on discrete thresholds, artificial neural networks allow 
continuous feature extraction and learn complex variation 
patterns in sensor data. In this study, the network is 
designed in a multi-layer feed-forward structure. 

Figure 3. Structure of artificial neural network after training 

At any neuron of the hidden layer, the pre-activation 
signal is computed as the weighted sum of the previous 
layer input plus a bias coefficient with the following 
general: 

𝐼𝐼𝑗𝑗 =  𝜃𝜃𝑗𝑗 +  �𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (12) 

In there, 𝑤𝑤𝑗𝑗𝑗𝑗  is the link weight between the 𝑖𝑖 input and 𝑗𝑗 
neuron, 𝜃𝜃𝑗𝑗 is the bias value, 𝑚𝑚 is the number of input 
features. 

• In the experiment, the ReLU function is applied to the
hidden layers:
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𝑦𝑦𝑗𝑗 = 𝑓𝑓�𝐼𝐼𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝐼𝐼𝑗𝑗� (13) 

• Calculate logit at the output layer:

𝑧𝑧𝑘𝑘 = 𝜃𝜃𝑘𝑘 + �𝑤𝑤𝑘𝑘𝑘𝑘 𝑦𝑦𝑗𝑗
𝑗𝑗

 (14) 

• Normalize the probability using Softmax:

𝑦𝑦 � =
𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧𝑘𝑘)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧𝑖𝑖)3
𝑖𝑖=1

(15) 

• Training and backpropagation:

∆𝑤𝑤𝑗𝑗𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

(16) 

∆𝜃𝜃𝑗𝑗 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

(17) 

• Adam optimization algorithm with updated
parameters:

𝑤𝑤𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑤𝑤𝑗𝑗𝑗𝑗

(𝑜𝑜𝑜𝑜𝑜𝑜) − 𝜂𝜂∆𝑤𝑤𝑗𝑗𝑗𝑗 (18) 

After the input layer consisting of six features including 
temperature, MQ2, MP2, flame sensor, humidity and 
MQ135, the model uses three hidden layers, combined with 
the ReLU activation function to increase the nonlinear 
learning ability shown in Figure 3. Dropout layers with the 
ratio of zero point fifteen, zero point ten and zero point zero 
five are placed between the hidden layers to reduce the 
overfitting phenomenon when the model is trained on noisy 
data. The output layer consists of three softmax nodes, 
corresponding to the three states including Safe, Warning 
and Danger. The total number of parameters of the model 
is about forty-three thousand parameters, which is enough 
to represent but still maintain fast inference speed. The 
training process uses the Adam optimizer and the 
Categorical Cross Entropy loss function. Model 
performance is evaluated on the validation set using 
standard classification metrics, including accuracy, 
precision, and recall. Early stopping is used to stop training 
when the error no longer improves, avoiding the model 
memorizing noise in the data, in Table 1 and Algorithm 2. 

Table 1. ANN model training parameters 

Parameter Value 
Total samples ≈ 38,040 
Training samples ≈ 26,628 (70 %) 
Validation samples 5,706 (15 %) 
Test samples 5,706 (15 %) 

Parameter Value 

Preprocessing Data cleaning, Standard Scaler 
normalization 

Feature order [temp, mq2, mp2, flame, hum, 
mq135] 

Gaussian Noise layer Gaussian Noise (0.01) 
Architecture Dense 256 → 128 → 64 
Activation ReLU 
Dropout 0.15 – 0.10 – 0.05 
Max epochs 50 
Optimizer Adam (learning rate =0.001) 
Loss Categorical Cross-Entropy 
Early Stopping Patience = 5 

Thanks to its compact structure and strong nonlinear 
learning ability, the artificial neural network gives stable 
results in many practical operating scenarios, especially at 
fast-varying signal segments. The concurrent model has the 
advantage of being easily deployed on Internet of Things 
systems or devices with limited computational resources. 

Algorithm 2: Training the ANN model 

Input Historical data of collected 
sensors.

Output Trained ANN model and evaluation 
metrics.

1. Initialization: Split the dataset (train
70 %, validation 15 % and test 15 %).

2. 
Initialization: Setting up the
architecture and training parameters of
the ANN model.

3. While epochs ≤ EpochMax do
4. Training ANN model.

5. 
Model evaluation and comparison stops
when performance reaches the optimal
threshold.

6. if latest profits that meet the
termination conditions then

7. Save the evaluation model.
8. else
9. epoch ← epoch+1 end go to Step 3.
10. end if
11. end while

12. Output model evaluation results, model and
test set predictions.

13. End

3.3. Long Short-Term Memory 

LSTM is a variant of RNN designed to process time series 
data with long-term dependencies, in Figure 4. Thanks to 
the structure of forget gates, input gates and output gates, 
LSTM is able to select important information and remove 
noise over time, helping to accurately model the 
fluctuations of sensor signals in fire scenarios. 

At time 𝑡𝑡, an LSTM unit receives three inputs including 
𝑥𝑥𝑡𝑡 which is the feature vector at the current time, ℎ𝑡𝑡−1 
which is the hidden state of the previous step and 𝑐𝑐𝑡𝑡−1 
which is the memory state of the previous step. The three 
gates in LSTM are defined as follows: 
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Figure 4. Internal unit structure of LSTM network 

Forget gate is the information in the previous cell state 
that needs to be retained: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (19) 

In there, 𝜎𝜎(⋅) is the sigmoid function for values in [0, 1], 
𝑊𝑊𝑓𝑓 is the weight matrix of the forget gate and 𝑏𝑏𝑓𝑓 is the bias 
vector. 

Input gate determines the amount of new information 
that needs to be written into the memory cell, including: 

• Input trigger port:

𝑖𝑖𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑖𝑖�ℎ𝑡𝑡−1 ,𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑖𝑖� (20) 

• Candidate state of memory cell:

𝑐𝑐𝑡𝑡� = tanh (𝑊𝑊𝑐𝑐�ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡� + 𝑏𝑏𝑐𝑐) (21) 

• Update the memory state at time t combining the old
information selected by 𝑓𝑓𝑡𝑡 and the new information
determined 𝑖𝑖𝑡𝑡:

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 +⊙ 𝑐𝑐𝑡𝑡�  (22) 

In this problem, the LSTM input is a twelve-step time 
series window, each step consists of six features including 
temperature, MQ2, MP2, flame sensor, humidity and 
MQ135. The model uses a LSTM layer with 64 units to 
encode the entire measurement series into a hidden vector, 
then passes it through a 32 Dense layer with ReLU 
activation function and a three-dimensional softmax layer 
to predict the probability corresponding to three states 
including safe, warning and danger, in Table 2 and 
Algorithm 3. 

Table 2. LSTM model training parameters 

Parameter Value 
Total samples ≈ 38,040 
Training samples ≈ 26,628 (70 %) 
Validation samples 5,706 (15 %) 
Test samples 5,706 (15 %) 

Preprocessing Data cleaning and Standard 
Scaler on 6 features 

Sequence length 12 consecutive time steps 

Input features 6 features (temp, mq2, mp2, 
flame, hum, mq135) 

Architecture LSTM (64) → Dense (32, 
ReLU) → Dense (3, Softmax) 

LSTM units 64 
Hidden dense units 32 (ReLU) 

Output layer Dense (3) with Softmax (3 
classes) 

Max epochs 50 
Optimizer Adam (learning rate=0.001) 
Loss Categorical Cross-Entropy 
Early Stopping Early Stopping, patience = 5 

The total number of parameters of the model is about 
38,040 samples, which is smaller than the ANN model but 
more effective in capturing trends and context over time. 
The model is trained using the Adam optimizer and the 
Categorical Cross Entropy loss function, with an early 
stopping mechanism to avoid overfitting. To ensure stable 
training of deep sequential models on noisy time-series 
data, the Adam optimization algorithm was adopted, owing 
to its adaptive learning-rate mechanism and robust 
convergence properties. Thanks to the ability to learn 
dynamic dependencies and reduce sensitivity to noise, 
LSTM achieves the most accurate and stable results in 
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experimental scenarios. In particular, LSTM responds well. 
The classifier allows for three-level risk prediction with 
real-time inference capabilities.to long stunts and 
continuously varying signal segments, which are difficult 
for DT and ANN models to represent accurately. 

From a system design perspective, the models 
demonstrate distinct trade-offs between computational 
complexity and predictive capability. In particular, 
sequential architectures exhibit superior capability in 
capturing the temporal characteristics of dynamically 
evolving sensor data, thereby enhancing the reliability of 
fire and explosion risk predictions under unstable operating 
conditions. 

Algorithm 3: Training the LSTM model 

Input Historical data set obtained from 
the sensor.

Output Model evaluation and prediction 
results on the test set.

1. Initialization: Data preprocessing.

2. Initialization: Split the dataset (train
70 %, validation 15 % and test 15 %).

3. Initialization: LSTM model architecture
and training parameters setup.

4. While epochs ≤ EpochMax do
5. Training LSTM network model.

6. Evaluate the model to stop the training
process early.

7. if loss function no longer decreases
after 5 epochs then

8. Save evaluation model, stop
training early.

9. else
10. epoch ← epoch+1 end go to Step 4.
11. end if
12. end while

13. Output model evaluation results, model and
test set predictions.

14. End

4. Results and evaluation

4.1. Experimental model 

The overall architecture of the fire monitoring and 
forecasting system on the pumping station model, 
including the main functional blocks and the sensor 
arrangement at the scene is described in Figure 5. At the 
input stage, environmental sensors and smoke fire sensors 
are connected via IO and ESP modules to collect real-time 
data. The data is then passed to the processing block, where 
cleaning, normalization, and windowing of the time series 
are performed before being passed to the classification 
module using a machine learning model. The lower part of 
the figure shows the sensor installation locations at the 
pumping station, including the flame sensor cluster and 
multi-channel environmental sensors, serving the 
continuous monitoring of key areas. This empirical model 
provides a basis for evaluating system reliability under 
various operating conditions. 

Figure 5. Experimental model and configuration of 
multi-sensor monitoring system at pumping station 

4.2. Training results 

Based on the results in Table 3 and from Figure 6 to Figure 
8, it can be seen that the LSTM quantitative results 
achieved the highest indexes: accuracy around 0.94, 
precision 0.93, ROC-AUC, and PR-AUC are both above 
0.94. ANN achieves accuracy around 0.92, precision is 
0.90, while DT achieves around 0.88 and lower precision. 
Confusion matrix shows that all three models recognize the 
Safety class well and the main difference lies in the 
Warning and Danger classes. LSTM gives a higher and 
more balanced prediction rate between these two classes; 
ANN is close but still tends to make mistakes in part of the 
samples at the edge while DT makes more mistakes when 
the data is noisy or rapidly changing. The summary tables 
show that LSTM has a higher mean punsafe, showing high 
sensitivity to risky regions, DT is more conservative with 
large mean p0, while ANN is in the middle. 

Table 3. Parameters of the marine diesel engine 

Model Accuracy Precision Recall ROC-
AUC 

PR-
AUC 

DT 0.88 0.86 0.84 0.91 0.89 
ANN 0.92 0.90 0.88 0.94 0.93 
LSTM 0.94 0.93 0.91 0.96 0.95 
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Figure 6. Confusion matrix of DT 
models 

Figure 7. Confusion matrix of 
ANN models 

Figure 8. Confusion matrix of LSTM 
models 

4.3. Experimental results and evaluation of 
results 

Figure 9 depicts the variation of the dangerous probability 
punsafe over time for three classification models including 
DT, ANN and LSTM on the experimental data series. The 
results show that DT generates discrete signals with large 
oscillation amplitudes and is very sensitive to sensor noise, 
leading to strong variations of punsafe when the input 
conditions change slightly, similar to study [26]. The 
binary branching characteristic of decision trees causes the 
output to be hard segmented and amplify local noise, so the 

signal needs to be filtered to properly reflect the risk trend 
over time. Meanwhile, ANN gives a more stable signal, 
showing well the phases of increasing or decreasing risk in 
the data, but there are still slight fluctuations and delays in 
the transition zone when environmental conditions change 
suddenly. LSTM gives the most stable results of the three 
models: the output signal is relatively smooth even without 
filtering and follows long-term risk evolution phases 
thanks to its ability to exploit time-dependent information 
in the data. This shows that LSTM is more suitable for 
continuous time series forecasting problem, while ANN 
achieves intermediate level and DT is less stable when 
working with noisy data. 

Figure 9. Comparison of punsafe over time of three models DT, ANN and LSTM on experimental series 

Table 4. Compare statistical summary of prediction results 

Index DT ANN LSTM 
Total predicted samples Long sequence (stable 

background data) 
43 consecutive samples 2019 consecutive 

samples 
Risk level distribution (Safe 
– Warning – Dangerous)

≈ 100 % – 0 % – 0 % ≈ 35 % – 65 % – 0 % ≈ 87 % – 12 % – 0,4 % 

Number of transitions
between risk levels

0 (none observed) 4 transitions (2 Safe → Warning, 2 
Warning → Safe) 

59 transitions over the 
entire sequence 
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Typical confidence 
characteristics 

p₀ stable around ≈ 0.67; p₂ 
baseline ≈ 0.33; p₁ ≈ 0 

Average confidence ≈ 0.70; high 
for Safe, lower for Warning 

Strongly concentrated 
probabilities 

Table 4 presents the summary statistics of the prediction 
results of three models DT, ANN and LSTM on 
experimental time series data. The DT model shows high 
stability but hardly reflects different risk levels because the 
forecasts are mostly in the Safety class. ANN provides a 
more balanced risk distribution and can observe state 
transitions between levels, however the confidence level 
over time still fluctuates and is not really prominent in 
dangerous stunts. LSTM gives the best results with the 
ability to follow long risk segments, large total number of 
prediction samples and clear number of state transitions. 
The confidence level of LSTM is strongly concentrated at 
the Safe and Danger levels, showing that the model is good 
at identifying risky regions in the time series. In the 
proposed system, a sensor error detection mechanism is 
incorporated into the real-time prediction phase by 
monitoring missing values, physical boundary violations, 

abrupt signal changes, and signal stagnation for each 
sensor. Upon error detection, the affected data sample is 
flagged to notify the operator and excluded from the LSTM 
input window, thereby preventing distortion of the 
prediction outcomes. 

To clarify the novel aspects and assess the ability to 
address practical problems, the results of this study were 
compared with previously published works to ensure 
objectivity in evaluating the effectiveness of the proposed 
solution, as presented in Table 5. The comparison results 
indicate that, while previous studies mainly focused on fire 
detection based on static criteria and fixed thresholds, the 
proposed approach extends toward multi-sensor time-
series data analysis, enabling earlier detection and multi-
level assessment of fire and explosion risk with improved 
stability and reliability. 

Table 5. Comparison of the proposed approach with previously published studies 

Study Platform & Sensors Method Detection 
Objective Key Features 

Study [27] 
ESP32, basic environmental 
sensors (temperature, gas, 
humidity) 

Simple 
threshold 

comparison 

Forest fire 
detection 

Simple IoT system, easy to deploy, 
low cost 

Study [28] 
ESP32, wireless sensor network 
(temperature, humidity, pressure, 
gas concentration) 

Statistical 
analysis 

Early fire 
detection 

Fast detection time, includes 
reliability assessment of devices 

This study 
Arduino, ESP8266, multi-sensor 
system (temperature, gas, smoke, 
humidity, flame, composite gas) 

Deep learning 
and time-

series analysis 

Early detection 
and multi-level 
risk warning 

Exploits dynamic relationships 
among sensors, noise reduction, 
multi-level risk assessment based on 
trained deep learning models 

5. Conclusion

This study proposed and implemented a fire risk 
monitoring and forecasting system based on real-time 
sensor data, tested on a miniature industrial pumping 
station model. By integrating various environmental 
sensors and fire/smoke sensors, the system generates multi-
channel data streams that fully reflect the operating states 
from safe background to dangerous activation phases. On 
that data, three machine learning models including DT, 
ANN and LSTM are trained and evaluated according to the 
same standard process, ensuring objectivity and 
comparability. The results show that the LSTM model has 
the best performance: high accuracy, precision and good 
tracking ability in long-term danger zones. ANN has quite 
good signal smoothness but is less stable in the warning 
layer, while DT reacts quickly but is susceptible to noise 
and depends heavily on pre-processing conditions. The 
comparison of punsafe signals over time also confirms that 
LSTM is most suitable for continuously operating warning 

systems, where stability and high sensitivity to abnormal 
signs are required. 

The experimental model has demonstrated the 
feasibility of applying deep learning in monitoring fire and 
explosion risks at pumping stations, and at the same time 
provides a basis for expansion to more complex industrial 
environments. In the future, the system can be developed 
in the direction of increasing the number of sensors, 
improving data resolution, incorporating more hybrid 
models, or applying reinforcement learning techniques to 
improve accuracy and reduce false alarms. The obtained 
results show that this approach has high application 
potential and can become the foundation for smart warning 
systems in practice. 
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