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Abstract

Sensor-based safety monitoring systems play an important role in early detection and prevention of fire and explosion
incidents at industrial pumping stations. Modern stations integrate multiple sensors such as temperature, humidity, gas, dust,
air quality and fire sensors to assess operational status. In practice, continuous monitoring and coordinated analysis of multi-
sensor data conducted by experienced professionals can significantly reduce the risk of fire and explosion. However,
sustaining continuous expert-based monitoring is challenging due to high operational costs, manpower demands, and
practical constraints. Consequently, automated monitoring and forecasting systems are required to deliver continuous and
timely risk assessments while minimizing dependence on manual supervision. However, sensor signals often contain noise

that is nonlinear and susceptible to environmental influences, making traditional threshold comparison methods unstable.
This paper proposes a fire monitoring and forecasting system based on time series data and deep learning model with three
status levels including safe, warning and dangerous. The models used and compared include decision trees, artificial neural
networks, and long short-term memory networks with a twelve-step time window. Multi-sensor data are normalized and
organized into time series windows to reduce noise and reflect fluctuations in real-world conditions. Experimental results
on sensor data collected at the pumping station show that the long short-term memory network achieves higher accuracy and
precision than the other two models. Contributing to improving the reliability of safety monitoring at the pumping station
and creating a basis for practical implementation.
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1. Introduction thresholds, such as modeling the relationship between hot

air flow and the thermal response of a detector [1] or optical
obscuration thresholds for smoke detectors [2-3]. The
physical properties of smoke including particle size, optical
density and aging process have been analyzed in [4], and
even in large spaces, threshold-based binary classification
method is still widely applied [5]. However, threshold-
based models are susceptible to environmental background
noise and increase the false alarm rate.

As the need to reduce false positives became more
urgent, more traditional machine learning methods began

Fire and explosion are among the most dangerous incidents
in the industrial environment, which can cause great
damage to property, disrupt production and directly
threaten human safety. In areas containing flammable fuels
or gases, the risk is even higher due to the rapid and
difficult-to-control spread, so monitoring and early
warning systems play a key role in promptly detecting
unusual signs before an incident occurs. In the early stages,
fire alarm systems relied mainly on single sensor
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to be investigated. For example, Support Vector Machines
(SVM) [6] allow the combination of multiple measurement
sources including heat, smoke, toxic gases, and humidity to
improve accuracy. High-dimensional sensor fusion [7],
fuzzy inference [8], and evidence fusion [9] methods help
smooth the response in the transition region. Reviews such
as building research establishment (BRE) [10] and studies
in [11] show that machine learning can significantly reduce
false positives, although most systems still stop at binary
classification. Decision tree models are exploited in [12] to
describe risk variation with environmental conditions and
in [13] as an explanatory tool to identify abnormal trends
before thresholds are exceeded. The development of the
Internet of Things opens up the possibility of continuous
sensor data collection, thereby facilitating the application
of deep learning models in time series analysis. Research
[14] shows that long-short-term memory networks have
long-term memory capabilities and limited gradient loss,
thus suitable for describing temporal dependencies in fire
signals. Extensive studies [15-16] also demonstrate that
long short-term memory networks are more stable than
traditional Recurrent Neural Network (RNN) variants
when the environment contains a lot of noise. In Vietnam,
most fire alarm systems are still based on thresholds [17],
although TCVN 5738:2021 [18] standard has raised the
requirements for detector performance. Recent studies
using ESP32 and ESP8266 microcontroller platforms [19-
20] have begun to build continuous sensor data warehouses
for deep learning models. In parallel, decision tree models
used in forest fire spatial risk classification [21-22], multi-
layer feedforward models for nonlinear classification
problems [23], autoencoders in unlabeled anomaly
detection [24], and simple RNN variants in [25] also
demonstrated the ability to predict trends before thresholds
are exceeded.

In summary, although there have been many different
approaches, most studies still focus on binary classification
or have not fully exploited the time series nature of sensor
data. This raises the need to develop a more stable multi-
risk monitoring and forecasting system in noisy
environments. On that basis, the paper focuses on
developing a solution to monitor and forecast fire and
explosion risks for fuel pumping stations, exploiting real-
time sensor data combined with deep learning models to
identify abnormal conditions early, thereby supporting
timely warnings and minimizing risks in operations. The
main contributions of the paper include:

(1) Building an experimental model of a pumping
station and a multi-sensor Internet of Things system
to collect real-time data.

(2) Propose a process for processing and organizing
time series data, and develop decision tree, artificial
neural network and  short-term  memory
classification models for three risk levels.

(3) Organize training and experimental evaluation
based on collected results with many criteria to
clearly show the effectiveness of each model, and
at the same time propose a model combination
direction to improve the reliability of the system.
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The structure of this paper is distributed as follows:
Section 2 presents the methodology, including data
collection and storage, the overview of the proposed
model, the model evaluation criteria, and quantitative
thresholding. Section 3 provides the algorithm of the
training models; experimental and evaluation results are
provided in section 4. Section 5 will give conclusions for
the research.

2. Proposed method

Traditional fire alarm studies are mainly based on response
models of heat and smoke detectors, in which thresholds
are set based on optical obscuration, smoke density, or hot
air flow propagation characteristics. Although suitable in
simple environments, these threshold-based systems are
susceptible to environmental noise, causing false alarm
rates to increase significantly when background conditions
change or smoke signals are weak and unevenly dispersed.
The emergence of Internet of Things systems makes sensor
data collection more continuous and richer, facilitating the
application of machine learning methods such as SVM,
decision trees, fuzzy inference, and evidence fusion. The
development of deep learning, especially RNN and LSTM
models, opens up the possibility of modeling long-term
dependencies in noisy and complex data. However, most
fire alarm systems are still threshold-based or employ
simple machine learning models.

On that basis, the paper proposes a fire and explosion
risk monitoring and forecasting system for fuel pumping
stations based on real-time sensor data and deep learning
models. The multi-sensor data mining system is organized
in the form of time series and compares three methods DT,
ANN and LSTM to classify risks into three levels including
safety, warning and danger. This method aims to increase
the accuracy and stability of the warning system under real
operating conditions. The system is deployed on a
miniature industrial pumping station model, including
pump cluster, pipeline, fuel storage area and control
cabinet in Figure 1. Sensors are strategically installed at
critical leak-prone locations, such as control valve joints,
pump heads, flexible joints, and pump room ceilings, to
enable continuous acquisition of environmental
parameters: temperature and humidity reflect the risk of
overheating, MQ2 and MP2 record changes in combustible
gas, pressure or fluctuations related to leaks or smoldering,
MQ135 serves to assess air quality and flame sensors detect
infrared radiation.

Signals from sensors are read periodically through the
ATmega328  microcontroller,  pre-processed  and
transmitted to the computer via the ESP8266 module. The
computer performs two main functions including training
DT, ANN and LSTM models from historical data and real-
time inference to determine the risk level, thereby
triggering warnings such as buzzers, display interfaces or
sending messages, emails and phone calls. To apply to deep
learning models, the collected data is grouped and
organized into a three-dimensional data matrix including
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time axis, sensor axis and number of samples. This matrix
form supports well the preprocessing steps and time series
analysis, especially for LSTM models that need to group
data in consecutive windows. Data collected continuously

from sensors is saved as CSV files and data processing is
done in Python language on PyCharm software platform
with Pandas, Scikit learn and TensorFlow Keras libraries.

l Pump Station Model

| loT Sensors and Data Acquisition >

Feep Learning and Menitoring Interface>

Wired data transfer

Data collection Wireless Cloud Server Deep Learning
controller network
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K
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Figure 1. Fire monitoring and forecasting system model

2.1. Collect and store data

Sensor data were collected from a miniature fuel station
equipped with multiple environmental sensors, including
temperature, humidity, flammable gas, smoke, air quality,
and flame detection sensors. These sensors were interfaced
with embedded nodes based on Arduino and ESP8266
platforms, which periodically acquired sensor readings and
transmitted the data wirelessly to a central processing
computer.

At the receiving end, the incoming data stream is
recorded and continuously stored in a structured file format
together with corresponding timestamps. This storage
strategy ensures the integrity and traceability of the time-
series data and provides a reliable data source for
subsequent preprocessing, data partitioning, and model
training procedures described in the following sections.

2.2. Collect and store data

The pre-processing process includes the following main
steps:

e Raw preprocessing: normalize column names, convert
flame sensor signals to binary, cast data types, and
remove missing, duplicate, or outlier values.

e Feature normalization: sensor signals are normalized
by z-score or MinMaxScaler to bring the data to the
same scale and help the learning model to be more
stable.

e Time series organization: data is cut into sliding
windows. For DT and ANN, a one-step window is
used; for LSTM, a twelve-step window times six
features are used. Labels are assigned according to the
last sample of each series with three levels including
Safe 0, Warning 1, and Danger 2.

e Data splitting: data is split into 70 % training, 15 %
validation, and 15 % testing, ensuring uniform class
distribution.

e Setting the warning threshold: from the predicted
probabilities p0, pl and p2 on the testing set, the
quantity p unsafe is constructed to select the tau
threshold to balance between low false alarm rate and
good recall ability for dangerous situations.

After preprocessing, the data is organized into vectors or
time series depending on the model used. With DT and
ANN, each input sample is a vector of 6 features:

x = (temp, hum, mqZ2, mp2, mq135, flame) (1)

For the LSTM model, the data is formed into 12 x 6 time
series windows. The sensor system operates with a fixed
sampling interval; in the experiments, the sampling period
was set to approximately 2 seconds per sample.
Consequently, the 12-step input window of the LSTM
model corresponds to an observation duration of about 24
seconds, enabling the model to capture temporal trends and
risk accumulation over time while maintaining a prediction
latency suitable for early-warning applications. The label
of each sample belongs to one of three levels including Safe
0, Warning 1 and Danger 2. The dataset is divided in the
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ratio of 70 % for training, 15 % for validation and 15 % for
testing.

2.3. Collect and store data

The performance of the proposed models was evaluated
using standard classification metrics, including accuracy,
precision, recall, and confusion matrix analysis, in
combination with time-series smoothing techniques and
hysteresis rules. These metrics are well suited for assessing
multi-level risk classification performance under noisy
sensor data conditions.

e Accuracy:

P ~ TP + TN
CeUracy = rpb Y TN + FP + FN

2)

In there, TP is the number of samples belonging to the
class to be detected and predicted correctly, TN is the
number of samples not belonging to that class and
predicted correctly, FP is the number of samples not
belonging to the class but predicted incorrectly, and FN is
the number of samples belonging to that class but missed.
In the multi-class classification of Safety, Warning and
Danger, when considering class i, we always consider class
i as positive and the other two classes as negative.

e Precision of class i:

TP,
TP; + FP; )
In there, TP; is the number of correctly predicted
samples of class i, and FP; is the number of samples that
do not belong to class i but are mistakenly predicted to
belong to class i.

Precision; =

e Recall of class i:

_Th
Recall; = TP+ FN. 4)
L L

In there, FN; is the number of missed samples of class i.

e Confusion Matrix:

Noo  No1  Np,
CM = N1o N11 N12 (5)
Nyy Npp Ny

In there, N;j is number of actual samples belonging to
class i, but the model predicted class j, Ny, is Safe samples
predicted to be Warning, and N,, is Dangerous samples
predicted correctly.

¢ Smoothing time series:
p et (t) = ap(t) + (1 —a)p™°"(t—1) (6)

In there, p(t) is the predicted probability at time ¢,
pS™oth(t) is the probability after smoothing, a is the

2 EA

smoothing coefficient in the range zero point ten to zero
point three, and low alpha values smooth more, high alphas
react faster.

e Hysteresis rules for risk labeling:

2 if punsafe (t) > T2
?(f) =41 ifpunsafe(t) >T (7)
0 opposite
In there, J(t) is the risk label at time t, pypsape(t) is

the probability that the sample belongs to the unsafe group.
T, is the threshold for triggering danger, 7, is the threshold
for triggering warning, and hysteresis avoids continuous
label fluctuations in transition regions.

2.4. Quantitative thresholding

In this study, each time-series window is labeled according
to the risk state at its final sample to facilitate early risk
prediction. A safe state is assigned when all sensor signals
at this time remain within normal operating ranges and no
flame signal is detected, whereas an alert state is assigned
when at least one sensor exceeds the alert threshold without
reaching a dangerous level. In transitional regions, where
sensor values fluctuate near decision thresholds or
demonstrate an increasing temporal trend, a priority-based
labeling principle is applied.
The labeling rules are implemented as follows:

e Safe state:

y() = 0if (Viix; (£) < TYY™) A 3
flame(t) =0 ®)

e Warm state:

y(t) = 1if (3i: T ™ < x,(£) < T™) A

9
flame(t) =0 )
e Dangerous state:
y() =2if (Eli:xi(t) > Tidanger) v
(10)

flame(t) =1

In there, x;(t) is the measurement of the i-th sensor at
the last time step, T;**"™ denotes the warning threshold of
the i-th sensor, Tidang " denotes the danger threshold of the
i-th sensor, flame(t) € {0,1} denotes the flame sensor

signal at the final sample, and y(t) denotes the risk label of
the time series.

3. Fire monitoring and forecasting
system model

3.1. Decision tree model
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Humidity (%) < 69 depth parameter adjusted during testing to avoid
samples=100% A o
class=Safe (0) overfitting. After training, the tree structure allows for
rue \:alse visual identification of the conditions leading to each risk
MQI35 = 11388 | | THumidity (%) < 89 level, supporting the interpretation of the model's decisions
les=58.4% les=41.6% . . . . .
*dass-Safe (0) | | class-Danger (2) in an industrial context, as presented in Figure 2 and
/ & i \ Algorithm 1.
Temp = 32.95 MP2 = 236.80 MP2 = 316.47 MQ135 = 486.80
samples=9.1% samples=49.3% samples=26.2% samples=15.4% - —
class=Safe class=Safe class=Warn (1) class=Danger (2) Algor:.thm 1: Tralnlng the DT model

/l /\ /\ ’/ \ Input The training dataset consists of

feature vectors and labels.
‘Safe ‘Safe |Safe |Sﬂfe ‘Wam| ‘Wam| Trained DT model and evaluation

Danger Danger

Fi 2. Decisi t t t fter traini Output metrics.
igure <. Decision tree structure aiter training 1 Initialization: The root node contains all
: the data.
2. Calculate the Gini index « (11).
The decision tree model is chosen for its simplicity, fast 3. Z;Zh p]?esjtlfrls separation thresholds for
infere.nce spee.d and intuitive interpretation, §uitab1§ for . Choose the threshold that gives the
real-time warning systems. Each data sample is classified ) largest Gini reduction.
by going through the branching nodes, feature selection 5. Split the data into two sub-branches.
model and splitting threshold to reduce the chaos of the . ~Stop when the node reaches homogeneity or
p g ' the depth exceeds a threshold.
data set at each node. ; Output model evaluation results, model and
The index used is the Gini measure, which is defined as *  test set predictions.
follows: 8. End
c A
5 3.2. Artificial Neural Network
G=1- ) p; (11)

Artificial neural networks are used to model the nonlinear
relationship between sensor signals and the safety status of
the pumping station. Unlike the decision tree model based
on discrete thresholds, artificial neural networks allow
continuous feature extraction and learn complex variation
patterns in sensor data. In this study, the network is
designed in a multi-layer feed-forward structure.

In which, p; is the proportion of samples belonging to
class i at the node under consideration.

The model receives as input 6 sensor features and 3 class
labels. The decision tree is trained using the classification
and regression trees (CART) algorithm with the maximum

Hidden layer 1 Hidden layer 2
Input 128 units « RelLU 64 units » RelLU Output
6 features Dropout 0.2 Dropout 0.1 3 classes ¢+ Softmax
Temperature (°C) €] 0 0 9] Danger (2)
¢ e
MQ2 gas (ppm) €] 0 3]
6 6
MP2 smoke (ppm) 0 0 3]
o o ©) Warning (1)
Flame (0/1
(0/1) 0 0 o
Humidity (%) ¢) o O
0 O
MQ135 gas (ppm) 0 ¢} O 9] Safe (0}
Figure 3. Structure of artificial neural network after training
At any neuron of the hidden layer, the pre-activation
signal is computed as the weighted sum of the previous In there, wy; is the link weight between the i input and j
layer input plus a bias coefficient with the following neuron, 6; is the bias value, m is the number of input
general: features.
- e In the experiment, the ReLU function is applied to the
lj=0;+ zwﬂxl (12) hidden layers:
i=1
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y; = f(I;) = max(0,1;) (13)

e Calculate logit at the output layer:
Zk=0k +ZWk]y] (14)
J

e Normalize the probability using Softmax:

exp(z
== p(zx) (15)
i=1exp(z;)
¢ Training and backpropagation:
Aw;. = ol 16
Wi, = aMGi ( )
26, = 2 17
Jj _'agj (17)
e Adam optimization algorithm with updated
parameters:
Wj(ineW) — Wj(iOld) _ WAsz (18)

After the input layer consisting of six features including
temperature, MQ2, MP2, flame sensor, humidity and
MQ135, the model uses three hidden layers, combined with
the ReLU activation function to increase the nonlinear
learning ability shown in Figure 3. Dropout layers with the
ratio of zero point fifteen, zero point ten and zero point zero
five are placed between the hidden layers to reduce the
overfitting phenomenon when the model is trained on noisy
data. The output layer consists of three softmax nodes,
corresponding to the three states including Safe, Warning
and Danger. The total number of parameters of the model
is about forty-three thousand parameters, which is enough
to represent but still maintain fast inference speed. The
training process uses the Adam optimizer and the
Categorical Cross Entropy loss function. Model
performance is evaluated on the validation set using
standard classification metrics, including accuracy,
precision, and recall. Early stopping is used to stop training
when the error no longer improves, avoiding the model
memorizing noise in the data, in Table 1 and Algorithm 2.

Table 1. ANN model training parameters

Parameter Value
Total samples ~ 38,040
Training samples ~ 26,628 (70 %)
Validation samples 5,706 (15 %)
Test samples 5,706 (15 %)

2 EA

Parameter Value
. Data cleaning, Standard Scaler
Preprocessing .
normalization
[temp, mq2, mp2, flame, hum,

Feature order mq135]

Gaussian Noise layer Gaussian Noise (0.01)

Architecture Dense 256 — 128 — 64
Activation ReLU

Dropout 0.15-0.10-0.05

Max epochs 50

Optimizer Adam (learning rate =0.001)

Loss Categorical Cross-Entropy
Early Stopping Patience = 5

Thanks to its compact structure and strong nonlinear
learning ability, the artificial neural network gives stable
results in many practical operating scenarios, especially at
fast-varying signal segments. The concurrent model has the
advantage of being easily deployed on Internet of Things
systems or devices with limited computational resources.

Algorithm 2: Training the ANN model

Historical data of collected
Input
sensors.
Trained ANN model and evaluation
Output )
metrics.
1 Initialization: Split the dataset (train
: 70 %, validation 15 % and test 15 %).
Initialization: Setting up the
2. architecture and training parameters of
the ANN model.
3. While epochs < EpochMax do
4. Training ANN model.
Model evaluation and comparison stops
5. when performance reaches the optimal
threshold.
6 if latest profits that meet the
termination conditions then
7. Save the evaluation model.
8. else
9. epoch — epoch+l end go to Step 3.
10. end if

11. end while

Output model evaluation results, model and
test set predictions.

13. End

3.3. Long Short-Term Memory

LSTM is a variant of RNN designed to process time series
data with long-term dependencies, in Figure 4. Thanks to
the structure of forget gates, input gates and output gates,
LSTM is able to select important information and remove
noise over time, helping to accurately model the
fluctuations of sensor signals in fire scenarios.

At time t, an LSTM unit receives three inputs including
x; which is the feature vector at the current time, h;_;
which is the hidden state of the previous step and c;_;
which is the memory state of the previous step. The three
gates in LSTM are defined as follows:
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Figure 4. Internal unit structure of LSTM network

Forget gate is the information in the previous cell state
that needs to be retained:

fe= G(Wf[ht—l:xt] + bf) (19)

In there, o (+) is the sigmoid function for values in [0, 1],
Wy is the weight matrix of the forget gate and by is the bias
vector.

Input gate determines the amount of new information
that needs to be written into the memory cell, including:

e Input trigger port:
ii = o(Wi[he_y x¢] + b)) (20)
¢ Candidate state of memory cell:
¢ = tanh (W,[h,_y x;] + b.) 1)

e Update the memory state at time t combining the old
information selected by f; and the new information
determined i;:

=/t Oc1+0O& (22)

In this problem, the LSTM input is a twelve-step time
series window, each step consists of six features including
temperature, MQ2, MP2, flame sensor, humidity and
MQ135. The model uses a LSTM layer with 64 units to
encode the entire measurement series into a hidden vector,
then passes it through a 32 Dense layer with ReLU
activation function and a three-dimensional softmax layer
to predict the probability corresponding to three states
including safe, warning and danger, in Table 2 and
Algorithm 3.

Table 2. LSTM model training parameters

Parameter

Value

Total samples
Training samples
Validation samples
Test samples

Preprocessing
Sequence length

Input features

Architecture

LSTM units
Hidden dense units

Output layer
Max epochs
Optimizer
Loss

Early Stopping

~ 38,040

~ 26,628 (70 %)

5,706 (15 %)

5,706 (15 %)

Data cleaning and Standard
Scaler on 6 features

12 consecutive time steps

6 features (temp, mq2, mp2,
flame, hum, mq135)

LSTM (64) — Dense (32,
ReLU) — Dense (3, Softmax)
64

32 (ReLU)

Dense (3) with Softmax (3
classes)

50

Adam (learning rate=0.001)
Categorical Cross-Entropy
Early Stopping, patience =5

The total number of parameters of the model is about

38,040 samples, which is smaller than the ANN model but
more effective in capturing trends and context over time.
The model is trained using the Adam optimizer and the
Categorical Cross Entropy loss function, with an early
stopping mechanism to avoid overfitting. To ensure stable
training of deep sequential models on noisy time-series
data, the Adam optimization algorithm was adopted, owing
to its adaptive learning-rate mechanism and robust
convergence properties. Thanks to the ability to learn
dynamic dependencies and reduce sensitivity to noise,
LSTM achieves the most accurate and stable results in
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experimental scenarios. In particular, LSTM responds well.
The classifier allows for three-level risk prediction with
real-time inference capabilities.to long stunts and
continuously varying signal segments, which are difficult
for DT and ANN models to represent accurately.

From a system design perspective, the models
demonstrate distinct trade-offs between computational
complexity and predictive capability. In particular,
sequential architectures exhibit superior capability in
capturing the temporal characteristics of dynamically
evolving sensor data, thereby enhancing the reliability of
fire and explosion risk predictions under unstable operating
conditions.

Algorithm 3: Training the LSTM model
Historical data set obtained from
the sensor.

Model evaluation and prediction
results on the test set.

1. Initialization: Data preprocessing.
Initialization: Split the dataset (train

Input

Output

2 70 %, validation 15 % and test 15 %).

3 Initialization: LSTM model architecture
: and training parameters setup.

4. While epochs < EpochMax do

5. Training LSTM network model.

6 Evaluate the model to stop the training
: process early.

7 if loss function no longer decreases
' after 5 epochs then

8 Save evaluation model, stop
' training early.

9. else

10. epoch « epochtl end go to Step 4.

11. end if

12. end while

Output model evaluation results, model and
13. . .

test set predictions.
14. End

4. Results and evaluation

4.1. Experimental model

The overall architecture of the fire monitoring and
forecasting system on the pumping station model,
including the main functional blocks and the sensor
arrangement at the scene is described in Figure 5. At the
input stage, environmental sensors and smoke fire sensors
are connected via IO and ESP modules to collect real-time
data. The data is then passed to the processing block, where
cleaning, normalization, and windowing of the time series
are performed before being passed to the classification
module using a machine learning model. The lower part of
the figure shows the sensor installation locations at the
pumping station, including the flame sensor cluster and
multi-channel environmental sensors, serving the
continuous monitoring of key areas. This empirical model
provides a basis for evaluating system reliability under
various operating conditions.

< EAI
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Figure 5. Experimental model and configuration of
multi-sensor monitoring system at pumping station

4.2. Training results

Based on the results in Table 3 and from Figure 6 to Figure
8, it can be seen that the LSTM quantitative results
achieved the highest indexes: accuracy around 0.94,
precision 0.93, ROC-AUC, and PR-AUC are both above
0.94. ANN achieves accuracy around 0.92, precision is
0.90, while DT achieves around 0.88 and lower precision.
Confusion matrix shows that all three models recognize the
Safety class well and the main difference lies in the
Warning and Danger classes. LSTM gives a higher and
more balanced prediction rate between these two classes;
ANN is close but still tends to make mistakes in part of the
samples at the edge while DT makes more mistakes when
the data is noisy or rapidly changing. The summary tables
show that LSTM has a higher mean p sz, showing high
sensitivity to risky regions, DT is more conservative with
large mean po, while ANN is in the middle.

Table 3. Parameters of the marine diesel engine

.. ROC-  PR-

Model Accuracy Precision Recall AUC  AUC
DT 0.88 0.86 0.84 0.91 0.89
ANN 0.92 0.90 0.88 0.94 0.93
LSTM 0.94 0.93 0.91 0.96 0.95
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Figure 8. Confusion matrix of LSTM
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4.3. Experimental results and evaluation of
results

Figure 9 depicts the variation of the dangerous probability
Punsafe OVer time for three classification models including
DT, ANN and LSTM on the experimental data series. The
results show that DT generates discrete signals with large
oscillation amplitudes and is very sensitive to sensor noise,
leading to strong variations of Py When the input
conditions change slightly, similar to study [26]. The
binary branching characteristic of decision trees causes the
output to be hard segmented and amplify local noise, so the

Decision Tree — noisy

p unsafe
Q
b

signal needs to be filtered to properly reflect the risk trend
over time. Meanwhile, ANN gives a more stable signal,
showing well the phases of increasing or decreasing risk in
the data, but there are still slight fluctuations and delays in
the transition zone when environmental conditions change
suddenly. LSTM gives the most stable results of the three
models: the output signal is relatively smooth even without
filtering and follows long-term risk evolution phases
thanks to its ability to exploit time-dependent information
in the data. This shows that LSTM is more suitable for
continuous time series forecasting problem, while ANN
achieves intermediate level and DT is less stable when
working with noisy data.
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Figure 9. Comparison of p,,.q Over time of three models DT, ANN and LSTM on experimental series

Table 4. Compare statistical summary of prediction results

Index DT ANN LSTM
Total predicted samples Long sequence (stable 43 consecutive samples 2019 consecutive
background data) samples

Risk level distribution (Safe =~ 100% —0% —0 %
— Warning — Dangerous)

Number  of  transitions 0 (none observed)
between risk levels

2 EA

=35%—-65%-0%

=87 % —-12%-0,4%

4 transitions (2 Safe — Warning, 2 59 transitions over the

Warning — Safe)

entire sequence
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Typical confidence

characteristics

po stable around =~ 0.67; p:
baseline = 0.33; p1 =0

Average confidence = 0.70; high Strongly concentrated

for Safe, lower for Warning

probabilities

Table 4 presents the summary statistics of the prediction
results of three models DT, ANN and LSTM on
experimental time series data. The DT model shows high
stability but hardly reflects different risk levels because the
forecasts are mostly in the Safety class. ANN provides a
more balanced risk distribution and can observe state
transitions between levels, however the confidence level
over time still fluctuates and is not really prominent in
dangerous stunts. LSTM gives the best results with the
ability to follow long risk segments, large total number of
prediction samples and clear number of state transitions.
The confidence level of LSTM is strongly concentrated at
the Safe and Danger levels, showing that the model is good
at identifying risky regions in the time series. In the
proposed system, a sensor error detection mechanism is
incorporated into the real-time prediction phase by
monitoring missing values, physical boundary violations,

abrupt signal changes, and signal stagnation for each
sensor. Upon error detection, the affected data sample is
flagged to notify the operator and excluded from the LSTM
input window, thereby preventing distortion of the
prediction outcomes.

To clarify the novel aspects and assess the ability to
address practical problems, the results of this study were
compared with previously published works to ensure
objectivity in evaluating the effectiveness of the proposed
solution, as presented in Table 5. The comparison results
indicate that, while previous studies mainly focused on fire
detection based on static criteria and fixed thresholds, the
proposed approach extends toward multi-sensor time-
series data analysis, enabling earlier detection and multi-
level assessment of fire and explosion risk with improved
stability and reliability.

Table 5. Comparison of the proposed approach with previously published studies

Study Platform & Sensors Method 3%}:2332 Key Features
ESP32, basic environmental Simple Forest fire  Simple loT system, easy to deploy,
Study [27]  sensors (temperature, gas, threshold detection low cost
humidity) comparison
St ESP32, wireless sensor network Statistical Early fire Fast detection time, includes
udy [28]  (temperature, humidity, pressure, : . - .
. analysis detection reliability assessment of devices
gas concentration)
Arduino, ESP8266, multi-sensor Deep learning Early detection Efnrgglts ser?g:rasmI%ois;elisgﬂcs:t?:)%s
This study  system (temperature, gas, smoke, and time- and multi-level 9 ; !

humidity, flame, composite gas)

series analysis

multi-level risk assessment based on

risk warning trained deep learning models

5. Conclusion

This study proposed and implemented a fire risk
monitoring and forecasting system based on real-time
sensor data, tested on a miniature industrial pumping
station model. By integrating various environmental
sensors and fire/smoke sensors, the system generates multi-
channel data streams that fully reflect the operating states
from safe background to dangerous activation phases. On
that data, three machine learning models including DT,
ANN and LSTM are trained and evaluated according to the
same standard process, ensuring objectivity and
comparability. The results show that the LSTM model has
the best performance: high accuracy, precision and good
tracking ability in long-term danger zones. ANN has quite
good signal smoothness but is less stable in the warning
layer, while DT reacts quickly but is susceptible to noise
and depends heavily on pre-processing conditions. The
comparison of p.eaf Signals over time also confirms that
LSTM is most suitable for continuously operating warning

2 EA

10

systems, where stability and high sensitivity to abnormal
signs are required.

The experimental model has demonstrated the
feasibility of applying deep learning in monitoring fire and
explosion risks at pumping stations, and at the same time
provides a basis for expansion to more complex industrial
environments. In the future, the system can be developed
in the direction of increasing the number of sensors,
improving data resolution, incorporating more hybrid
models, or applying reinforcement learning techniques to
improve accuracy and reduce false alarms. The obtained
results show that this approach has high application
potential and can become the foundation for smart warning
systems in practice.
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