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Abstract

Accurate classification of dual-band Wi-Fi signals is essential for improving adaptive band selection and
maintaining quality of service in complex indoor wireless environments. Although several efforts have
addressed propagation modeling, only few works simultaneously examined dual-band classification across
both 2.4 GHz and 5 GHz frequencies in realistic scenarios. In this work, we use the measurements data
conducted in the Deutsches Museum Bonn, which captures both line-of-sight (LoS) and non-LoS (NLoS)
propagation conditions in a complex indoor environment. Ten statistical features are extracted from the
received signal data, including mean, standard deviation, and skewness. To classify the signals, multiple
machine learning models are evaluated, including k-nearest neighbors, support vector machines, and two
deep learning architectures. Among these, model 3A, which is a fully connected neural network comprising
three hidden layers using ReLU activation with 64, 32, and 16 neurons, respectively, and a softmax output
layer, achieves the best performance. Trained with the Adam optimizer and categorical cross-entropy loss,
model 3A attains an overall classification accuracy of 93 % at the optimal window, thus outperforming the
baseline models in terms of precision, recall, and F1-score across all classes. These results highlight the model’s
robustness for simultaneous dual-band classification and its potential application in intelligent band selection
for next generation Wi-Fi systems.
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1. Introduction
The field of wireless communication is on a ground-
breaking transformation with the introduction and
development of sixth-generation (6G) technology. This
upcoming network aims to provide high data rates,
ultra-low latency, and reliable connectivity, thus allow-
ing a wide range of advanced applications, including
independent systems and real-time remote operations
[1]. Wi-Fi technologies, which include the new stan-
dards such as Wi-Fi 6 and 6E and new developments
such as Wi-Fi 7, are expected to improve and support
6G networks [2]. As 6G aspires to create an insightful
and interconnected digital ecosystem, there is a need
for network speed, reliability, and the convergence of
different communication technologies. The next gen-
eration Wi-Fi is going to play an important role in
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increasing localized high-speed connectivity, which will
enable artificial intelligence (AI)-driven network opti-
mization and support upcoming digital applications.
One basic advantage of the next generation Wi-Fi is
its ability to increase the speed of connectivity. Unlike
cellular networks which require massive infrastructure,
Wi-Fi is mostly installed indoors and provides cost-
effective high-bandwidth communication [3]. Another
key feature of the next generation Wi-Fi is its connec-
tion with AI-powered networks. Future networks will
take advantage of the availability of AI and machine
learning (ML) to improve network performance, spec-
trum allocation, and traffic management in real time.
This will create a more stable connection that is free
from interference, especially in concentrated urban and
industrial settings [4].

The next generation Wi-Fi market is set to expand
due to the rapid increase in consumers’ demand
for ultra-low, low-latency, and high-speed wireless
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connections. The principal force of this market growth
is due to the growing digital ecosystem. The global
Wi-Fi market is estimated to experience significant
growth, which is fueled by technological innovation
and business implementation of high-speed wireless
networks. By 2030, more than 50 billion digital devices
will be in operation, many of which will sorely
rely on Wi-Fi connectivity for data exchange, remote
management, and automation [5]. Wi-Fi will serve as
a facilitator of smart city applications that include
traffic management, AI-powered security surveillance,
and energy-efficient grid networks. Similarly, next
generation Wi-Fi will control innovations in industrial
settings. In manufacturing and its logistics, the
incorporation of Wi-Fi based automation will make
real-time robotic control, AI-driven quality assurance,
and predictive maintenance easier. This will result in
reduced operational costs and increased productivity
by taking advantage of industry 4.0 and industry 5.0
technologies. Looking at the entertainment sector, there
will be a significant impact by next generation Wi-Fi
especially in the area of gaming, cloud-based content
streaming, and virtual collaboration. As extended
reality (XR) technologies become mainstream, there
will be an increase in demand for ultra-fast, cost-
efficient Wi-Fi connectivity. Surpassing consumer uses,
Wi-Fi development will reshape healthcare services,
especially in telemedicine, AI-assisted diagnostics, and
remote patient monitoring. With the growing need for
real-time medical imaging and AI-driven healthcare
solutions, hospitals and research centers will rely
on high-speed Wi-Fi networks to facilitate wireless
medical imaging, AI-assisted surgery, and digital health
records management [6].

The next generation Wi-Fi symbolizes a major shift in
wireless communications engineered to compliment 6G
networks by providing high speed, cost-effective, and
multiband connection to a wide range of applications.
Its ability to operate across multiple frequency bands,
from sub-6 GHz to millimeter-wave and terahertz spec-
trums, makes it necessary for next generation com-
munication. However, achieving this vision presents
several challenges, such as hardware limitations, net-
work congestion, interference management, and energy
efficiency [7]. A basic idea in wireless communication
is the distinction between line-of-sight (LoS) and non-
LoS (NLoS) propagation. LoS occurs when the path
between the receiver and transmitter has no obstruc-
tions, whereas NLoS occurs when obstacles such as
buildings, forest or vegetation, or walls obstruct this
path, thus resulting in signal reflection, diffraction, or
scattering [8]. This variation is very important, as it
affects signal strength, quality, and overall network per-
formance. In Wi-Fi systems, managing LoS and NLoS
effectively is very essential to increase data transmis-
sion and ensure consistent connectivity, especially in

a highly concentrated and complex environment [9].
With the use of dual-band systems that work over
different frequencies, there has been an improvement
in Wi-Fi over time. This has aided in making Wi-Fi
connections more reliable indoors. Dual-band Wi-Fi
allows devices to connect to two different frequency
bands, thus giving more options to balance coverage,
speed, and signal strength. The 2.4 GHz band signal can
travel through walls and obstacles better, whilst the 5
GHz band allows for faster internet speeds when there
are fewer barriers [10]. The performance of wireless
communication is highly dependent on how signals
travel between access points and receivers [11]. Rec-
ognizing and differentiating between NLoS and LoS
paths is necessary for the improvement of indoor wire-
less connections. Each frequency band exhibits distinct
propagation characteristics. In contrast, 2.4 GHz sig-
nals typically propagate further and penetrate obsta-
cles more effectively, though with lower achievable
data rates [10]. To address how these frequency bands
behave in changing indoors settings, dual band systems
employ LoS and NLoS classification. This creates better
signal models and allows the system to select the best
frequency based on real-time conditions.

There are several benefits that using dual-band clas-
sifications can bring, such as good signal prediction
and quality network performance by choosing the best
frequency. LoS and NLoS signal paths make it diffi-
cult to keep wireless connections reliable, especially
in Wi-Fi’s. New Wi-Fi technologies incorporate mod-
ern or progressive features, which include beamform-
ing, multiple-input multiple-output systems, and high-
order modulation schemes, to increase signal quality
and decrease the negative effect of NLoS propagation.
Accurate channel estimation plays an important role in
these systems by adjusting signal settings, improving
direction control, and allowing multiple connections
at once. Dual-band Wi-Fi technologies make it even
more challenging to handle both LoS and NLoS signal
propagation by analyzing the signal behavior across
multiple frequency bands; systems can more accurately
identify propagation conditions, thus allowing better
decision-making for routing and resource allocation
[12]. Furthermore, recognizing the propagation envi-
ronment aids in dynamic adjustments, such as changing
frequency bands or transmission power, to maintain
the best performance [13]. The best band selection
strategies can increase network performance, reduce
delays, and make the overall user experience better.
However, the dynamic and unpredictable nature of
wireless environments characterized by multipath fad-
ing, interference, and fluctuating signal strength makes
it difficult to consistently select the optimal frequency
band. These challenges have been addressed through
various adaptive band selection and ML techniques,
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such as reinforcement learning and neural network-
based classifiers, which can learn from real-time chan-
nel conditions to predict the best band. While such
techniques improve adaptability, they also increase
computational complexity and require large datasets
for accurate model training.

This paper aims to investigate the concept of
simultaneous dual-band classification for Wi-Fi band
selection and emphasize innovative approaches that
enable efficient decision-making in real-time network
environments. While previous studies have applied
ML algorithms for band prediction and selection,
most have focused on single-band optimization or
simplified propagation models. In contrast, this work
introduces a simultaneous dual-band classification
framework using ray tracing-derived datasets, designed
to handle realistic indoor propagation effects. This
has the potential to enhance wireless communications,
minimize interference, and improve overall network
performance, which is crucial as the demand for high-
speed wireless connectivity steadily increases.

2. Background

Wireless communication systems have evolved to meet
the growing demand for high-speed data transmission,
efficient spectrum usage, and robust connectivity. The
IEEE 802.11 standards for wireless local area networks
(WLANs) assist 2.4 GHz and 5 GHz activities. Indus-
trial, scientific, and medical bands are instrumental
in wireless infrastructures. The 2.4 GHz band offers
exceptional circulation features as a result of its lower
frequency, whilst as a result of separate channel avail-
ability, the 5 GHz provides higher bandwidth with
little interference [14]. Dual-band WLAN utilizes these
features, but they only run smoothly if bands are cho-
sen thoughtfully and adjusted dynamically. To obtain
an ideal performance, there is a need to identify and
improve both frequency bands simultaneously. This
aids in providing great quality of service, reducing
interference, and assisting in the flexible management
of resources in different environments [15]. In reference
to [15], a research on comparing Wi-Fi documentation
and signal profiling methods in both frequency bands,
with a focus on location precision and power usage, was
conducted. The results of this study revealed that the
5 GHz band offers higher data rates and, as a result,
uses more energy, whilst the 2.4 GHz band is more
power-efficient. The findings from this study reveal the
need to balance energy consumption and data speed.
This can be achieved through an adaptive dual-band
selection mechanism. Also, ray tracing simulations were
used to analyze signal behavior in confined spaces such

as aircraft cabins. The results showed that environ-
mental factors such as passenger movement and struc-
tural obstacles reduce signal quality significantly, espe-
cially at higher frequencies. Also, to optimize WLAN
performance, band selection algorithms must consider
the surrounding environment. Further analysis in [3]
addressed the complexities of resource allocation in
multi-band communication systems, particularly 5 GHz
and sub-6 GHz coexistence. The research highlighted
and focused on key challenges such as inter-band inter-
ference, latency introduced by concurrent operations,
and sub-optimal spectrum utilization. Simultaneous
classification approaches such as multi-band convolu-
tional neural networks and ensemble learning models
have been proposed to enhance spectrum efficiency
and reduce cross-band contention by jointly analyzing
signal features from both 2.4 GHz and 5 GHz channels
for optimal band allocation. Their conclusions empha-
sized the need for strong decision-making frameworks
in order to manage the dynamic spectrum conditions.
Beyond WLANs, precise indoor localization remains
a critical area, particularly for mission-critical appli-
cations requiring sub-meter precision. Ultra-wideband
(UWB) systems offer high temporal time resolution
for accurate distance measurements. However, UWB
performance is very sensitive to signal reflections, i.e.,
multipath propagation, and signal obstructions [16]. As
detailed, distinguishing between LoS and NLoS signal
components is key to minimizing positioning errors.
NLoS paths introduce extra delay, which is caused
by reflections and diffractions; this reduces accuracy,
unless they are properly identified and filtered out.
This implies that reliable UWB localization requires
pre-processing techniques to isolate direct paths from
obstructed paths, using signal features like time-of-
arrival and received signal strength (RSS) indicator
variations. The increase in data-intensive applications
like real-time streaming and mobile internet has driven
the shift from narrowband to broadband access, with
technologies evolving from GSM/EDGE to more effi-
cient 5G/5G-A systems for better speed and efficiency.
Cognitive radio (CR) represents a revolution in wireless
technology by enabling systems to dynamically access
the smart spectrum, thus adapting to the environ-
ment and coordinating with other networks. However,
practical deployment of CR faces significant hurdles
like reliable spectrum sensing, real-time interference
avoidance, and regulations, thus requiring advanced
AI-based control and integrated protocols [14]. Mov-
ing into the future, the performance and scalability
of wireless systems depend on tackling several critical
challenges. These include: (1) Implementing smart con-
gestion control mechanisms to manage network den-
sity and increased traffic loads, (2) developing precise
channel models that capture the intricacies of signal
propagation in dense and dynamic environments, (3)
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developing energy-efficient protocol stacks to prolong
battery life in devices with limited power. Furthermore,
improved handling of LoS and NLoS signal effects and
the diverse nature of the spectrum will be crucial for
maintaining signal integrity and reducing interference
between systems. Addressing these issues will be vital
for maximizing the efficiency and user-friendliness of
future wireless ecosystems.

3. Dataset and Feature Engineering

The dataset utilized in this study originates from the
work presented in [10], which conducted extensive
dual-band measurements within two representative
indoor environments: the Deutsches Museum Bonn
(DMB) and the ICT Cubes at RWTH Aachen University.
The experimental setup involved two omnidirectional
transmission antennas operating at 2.4 GHz and 5 GHz,
specifically designed to ensure uniform radiation across
the azimuthal plane. This configuration enabled a com-
prehensive evaluation of frequency-dependent propa-
gation characteristics under real-world conditions. Ver-
tical gain patterns were employed to assess elevation-
dependent performance and identify potential direc-
tional attenuation. The combined analysis facilitated
a systematic comparison between the two frequency
bands, thus revealing critical differences in signal
behavior across environments and informing strategies
for enhancing WLAN performance and robustness in
complex indoor scenarios. Measurements were taken at
the two frequencies, 2.4 GHz and 5 GHz, respectively.
Multiple measurement routes were followed for each
environment, with a careful definition of the trans-
mitter and receiver positions. The measurements were
recorded using specialized equipment capable of aver-
aging multiple readings per point to minimize small-
scale fading. The data includes RSS values under both
LoS and NLoS conditions. The datasets accounted for
the antenna’s characteristics. The feature engineering in
this paper takes raw measurement data and turns it into
useful input for modeling and analysis. This process
involves preprocessing the data and then calculating
important statistical metrics and derived features such
as mean, standard deviation, maximum. These features
capture the essential characteristics of the signals, thus
allowing for strong classification and predictive mod-
eling. To transform the raw simulation output into a
format suitable for ML as shown in figure 1, significant
statistical and signal features were obtained from differ-
ent parts of the received power data. Let Pi denote the
received power of the i-th sample in a given window
of N measurements. The extracted features include
mean, standard deviation (SD), skewness (SK), kurtosis
(KT), half skewness (hSK), max, min, distribution ratio
(D-Ratio), geometric mean (Gmean), and range. The

variables and equations used in the feature extraction
process are shown as follows:

Figure 1. A visualization of feature of R-power to aid in and
pattern recognition.

• Mean (µ): It is the average signal power within
the window, as shown in figure 2. The higher
the mean, the stronger the signal regions. This
helps to separate bands with different attenuation
behavior. µ is calculated as follows:

µ =
1
N

N∑
i=1

Pi . (1)

Figure 2. A feature distribution of Mean.

• SD (σ): The spread or variability of signal power.
It quantifies how much the power fluctuates.
This helps to capture multipath fading intensity,
which varies between 2.4 GHz and 5 GHz due to
propagation differences. σ is given by

σ =

√√√
1
N

N∑
i=1

(Pi − µ)2. (2)
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• SK: It measures asymmetry of the power dis-
tribution and identifies bias in fading behavior.
For instance, whether most of the signal values
are clustered below or above the mean. Different
bands may exhibit different SK due to interference
or blockage. SK is shown as

SK =
1
N

N∑
i=1

(Pi − µ
σ

)3
. (3)

• KT: It measures "tailedness" or extremity of power
values. This helps to detect outliers and rare
strong/weak signal spikes. High KT may indicate
sporadic interference or dominant line-of-sight
paths. KT is derived as

KT =
1
N

N∑
i=1

(Pi − µ
σ

)4
. (4)

• hSK: Derived from higher statistical moments,
this feature enhances sensitivity to subtle changes
in signal asymmetry. It can capture non-obvious
signal shape properties that lower-order moments
miss, thus improving classification robustness.
This phenomenon is shown in figure 3.

Figure 3. A feature distributtion of HSK.

• Max: It indicates the strongest received signal in a
window, which is useful for identifying direct LoS
dominance or reflective boosts. Max is given by

max(Pi). (5)

• Min: It highlights shadowed or obstructed signal
regions. When combined with max, it reveals
signal spread. Min is written as

min(Pi). (6)

• Range: It captures the overall variability in signal
strength. A high dynamic range often signals
more complex multipath or interference patterns.
It is calculated as

Range = max(Pi) −min(Pi). (7)

• Gmean: It provides a multiplicative average that
is less sensitive to extreme values, thus offering
a complementary view to the arithmetic mean.
Gmean is derived as

Gmean =

 N∏
i=1

Pi


1/N

. (8)

• D-Ratio: It normalizes variability by average
power. High D-Ratio may indicate unstable
channels, which is useful for distinguishing high-
fading versus stable environments across bands.
D-Ratio is given by

D-Ratio =
σ
µ
. (9)

4. Proposed Model, Training, and Testing Approach
For classification of wireless signals based on the fea-
tures which are derived from the indoor measurements,
a ML framework is proposed. At 2.4 GHz and 5 GHz,
signals turn to face interference. Therefore, a reliable
model is needed to accurately classify the frequency
bands. A supervised learning method based on an
artificial neural network architecture, configured as
a feedforward multilayer perceptron, is implemented
to resolve this. The input layer accepts ten features
extracted from the measurement data. These features
describe overall patterns and complex variations in
signal strength, thus aiding in distinguishing between
different frequency bands. The hidden layers utilize
a rectified linear unit (ReLU) activation function. The
final output layer uses a softmax activation function
across the four classes, i.e., 2.4 GHz LoS, 2.4 GHz NLoS,
5 GHz LoS, and 5 GHz NLoS, to enable multiclass
probability estimation for band classification. Data pre-
processing is essential for the model to work well.
First, the dataset is split into input features that help
to make predictions, and class labels that show the
correct answers. Feature scaling is performed using
standardization. The dataset is divided into two parts:
80% for training the model and 20% for testing it. The
test data are kept separately during training to ensure
that the evaluation is fair and unbiased. During train-
ing, the model adjusts its settings repeatedly to reduce
error between the predicted probabilities and the true
class labels. After each epoch, the training progress
is monitored and the final settings are chosen based
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on the full training period, without stopping early. As
described above, figure 4 presents the workflow for data
preprocessing, model training, and evaluation in dual-
band classification.

Figure 4. Workflow of data preprocessing, model training, and
evaluation for dual-band classification.

The core of the model, labeled as model 3A,
comprises three hidden layers. The first hidden layer is
made up of 64 neurons, followed by a second layer with
32 neurons and a third layer with 16 neurons. A second
architecture labeled as model 3B is a control model,
which uses the same input and output set-up but has
only two hidden layers: The first with 64 neurons, and
the second with 32 neurons. All layers utilize the ReLU
activation function. The performance of the model is
evaluated by using Loss function, which is calculated
as follows:

L = −
N∑
i=1

C∑
c=1

yic log(ŷic), (10)

where N is the number of samples, C is the number of
classes, yic is the binary indicator (0 or 1) if class label
c is the correct classification for sample i, and ŷic is the
predicted probability that sample i is of class c.

• Precision: It measures the proportion of correctly
predicted positive instances among all predicted
positives, which is shown as

P =
T P

T P + FP
, (11)

where

– T P = True Positives (correctly predicted
positive instances)

– FP = False Positives (incorrectly predicted
positive instances)

• Recall (Sensitivity/True positive rate): It mea-
sures the proportion of correctly predicted posi-
tives among all actual positives, which is given by

R =
T P

T P + FN
, (12)

where

– FN = False Negatives (actual positives
incorrectly predicted as negatives)

• F1-Score: It is the harmonic mean of Precision and
Recall, which emphasizes the balance between the
two metrics. It is derived as

F1 =
2 × (P × R)

P + R
, (13)

where

– P = Precision

– R = Recall

• Accuracy: It is the proportion of correctly
predicted instances (both positive and negative)
out of the total instances, which is given by

A =
T P + TN

T P + TN + FP + FN
, (14)

where

– TN = True Negatives (correctly predicted
negative instances)

• Macro Average: It calculates the metric indepen-
dently for each class and then takes the mean,
which is shown as

MA =
1
N

N∑
i=1

mi , (15)

where

– N = Number of classes

– mi = Metric value for the i-th class

• Weighted Average: It accounts for the support of
each class, which makes it more representative for
imbalanced data. It is calculated as follows:

WA =
∑N

i=1(si ×mi)∑N
i=1 si

, (16)

where

6
EAI Endorsed Transactions on 

Tourism, Technology and Intelligence 
| Volume 2 | Issue 3 | 2025 | 



Simultaneous Dual-Band Classification for WLAN Band Selection

– si = Support for the i-th class (number of
instances)

Support vector machine (SVM) and k-nearest neigh-
bors (KNN) are used as control models, which provide
the benchmark performance metric. They serve as refer-
ence points, which provide a detailed evaluation of the
classification accuracy and window size parameters.

5. Simulation Results and Discussions
This section shows the results of conducted simulations,
which aided in evaluating the performance of the
proposed models. We aim to distinguish between
the effectiveness of the model’s classification against
standard benchmarks, i.e., SVM and KNN, and deriving
meaningful insights from the analysis. The used models
are evaluated based on their ability to differentiate and
classify specific signal bands, i.e., 2.4 GHz and 5 GHz,
under different conditions such as LoS and NLoS.

5.1. Performance of the Proposed Model over All
Windows
Based on its outstanding classification accuracy during
preliminary testing, model 3A is selected as the
proposed model for this study. This section presents a
detailed evaluation of its performance across windows.
The analysis of model 3A is conducted over a series
of windows ranging from window 10 to window 35.
This is done to determine how the different windows
affect the classification performance and to also identify
the best configuration for accurate band selection in
dual-band Wi-Fi selection. As shown in figure 5, model
3A shows a strong and consistent improvement in
accuracy as the window size increases. Beginning with
an accuracy of 82.42% in window 10, the model rises
to 88.39% in window 12. From window 13 to 18, there
is a stabilization in the accuracy, ranging from 87% to
89%. This suggests that there is a brief saturation in
performance gains irrespective of the increasing input
size. There is a notable boost in the performance around
window 20 with an accuracy of 90%. This pattern
continues with minor fluctuations, by window 22 the
model reaches a stable accuracy of 93%. From window
23 onwards, the model reaches a stable phase of strong
performance where the accuracy remain consistently
strong through subsequent windows ranging between
94% and 96%. While various windows show the model’s
full learning potential, the accuracies beyond window
22 become irrelevant. Practically, windows 22 offers an
ideal balance between data processing and accuracy
in data categorization as the performance curve
begins to plateau. Although marginal improvement
continues beyond window 22, the accuracy becomes
less significant compared to the extra computing cost.

This makes window 22 is well-suited for dual-band Wi-
Fi classification.

10 15 20 25 30 35
WINDOW

0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

AC
CU

RA
CY

Figure 5. Accuracy of the proposed model 3A across different
windows.

5.2. Performance of Different Features on the
Proposed Model
An additional evaluation is conducted to investigate
how the integration of different features affects the
classification performance of the proposed model, i.e.,
model 3A. Table 1 shows ten sets of feature labeled from
A to J are examined to analyze the contribution of each
feature to the overall model accuracy. The features are
progressively inceased and labeled from A to J. Each
label represents a cumulative set of features used for
the training model 3A.

Table 1. Cumulative feature combinations and their correspond
labels.

Cumulative Features Label
Mean A
Mean, SD B
Mean, SD, SK C
Mean, SD, SK, KT D
Mean, SD, SK, KT, hSK E
Mean, SD, SK, KT, hSK, Max F
Mean, SD, SK, KT, hSK, Max, Min G
Mean, SD, SK, KT, hSK, Max, Min, D-Ratio H
Mean, SD, SK, KT, hSK, Max, Min, D-Ratio,
Gmean

I

Mean, SD, SK, KT, hSK, Max, Min, D-Ratio,
Gmean, Range

J

As shown in figure 6, the model shows a steady
increment in the performance of the features as
they are cumulatively increased. This pattern reflects
how detailed the input becomes, which helps the
model to capture the characteristics of the signal. By
the time the cumulative increment of the features
reaches G, the accuracy surpasses 90%, which shows
a significant performance gain. Further increments,
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such as including D-Ratio in feature H, Gmean in
feature I, and Range in feature J, yield incremental
improvements, with feature J achieving the highest
accuracy of nearly 98%. These results show the effect
of combining different features. Each added feature
helps the model better understand Wi-Fi signals and
improves accuracy. However, after a certain point, the
extra features don’t add much benefit, which indicates
that excessive complexity doesn’t always lead to better
performance.

A B C D E F G H I J
FEATURE

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AC
CU

RA
CY

Figure 6. Feature accumulation accuracy of model 3A.

5.3. Comparison with Other Models and
Computational/Complexity Analysis

10 15 20 25 30 35
WINDOW

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AC
CU

RA
CY

MODEL 3A
MODEL 3B
SVM
KNN

Figure 7. Windows accuracy comparison of models classification.

A B C D E F G H I J
FEATURE

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AC
CU

RA
CY

MODEL 3A
MODEL 3B
SVM
KNN

Figure 8. Feature accuracy comparison of models classification.

The analysis of model 3A against baseline models,
i.e., model 3B, KNN, and SVM, is carried out using
two approaches: feature-based performance (A–J) and
window-based accuracy (window from 10 to 35). The
aim is to assess both the classification accuracy and
computational efficiency, which are very important
for real-time dual-band classification in wireless
environments. In terms of classification performance as
indicated in figure 7, model 3A demonstrates a higher
classification compared to other models. This analysis
highlights model 3A’s reliability. From an accuracy of
83% at window 10, there is a consistent improvement of
the model as it peaks at 98% by window 35. Model 3B
follows a similar upward trend but remains about 2%
lower on average. KNN and SVM also show a notable
increase, achieving 90% and 75%, respectively, at their
best.

In figure 8, model 3A shows rapid progress from
67% accuracy with feature A to over 91% with feature
J. The performance of the model increases as more
features are included, which indicates that the use
of statistical features together greatly improves the
learning capability of the model. Model 3B, while
similar to 3A, stabilizes at a slightly lower accuracy
of around 90%. In contrast, KNN and SVM present a
more modest improvement, with the accuracy of KNN
reaching about 86% at the J feature set while SVM
plateaus around 78%, thus showing less responsiveness
to feature increments.

Beyond accuracy, computational efficiency is an
important factor when it comes to the selection of
a model for real-time systems. Table 2 compares
the models in terms of complexity, efficiency, and
scalabity. Model 3A, which is a neural network with 3
hidden layers, requires moderate to high computational
resources during training. Some of the computing
load is reduced with the use of ReLU activation and
Adam optimizer. Once trained, model 3A is highly
efficient. With model 3B being similar in architecture
but less complex, it benefits from model 3A’s efficiency
but doesn’t match the accuracy. Its computational
demands are moderately lower during training as
a result of few layers. In contrast, KNN has a
lower computational requirement during training but
becomes computationally expensive during inference.
During prediction, KNN requires the calculation
of distances from the test point to every training
sample. As the dataset grows, the performance
of the model decreases. This makes KNN less
suitable for real-time classification tasks, especially
when the input data volume is high. SVM also
presents computational challenges, particularly with
non-linear kernels like radial basis function (RBF). Its
complexity during training increases as the dataset also
grows, thus increasing its computational requirements.
Additionally, SVM’s reliance on support vectors for
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Table 2. Computational complexity and performance comparison of Model 3A, Model 3B, KNN, and SVM.

Model Training Complexity Inference Complexity Efficiency Scalability
Model 3A Moderate (Deep learning) Low (Efficient after training) High (GPU optimized) High (Deep learning)
Model 3B Moderate (Fewer layers) Low (Efficient after training) High Good
KNN Low (Data storage only) High (Distance calculation) Low (Inefficient at scale) Poor (Memory-intensive)
SVM High (Kernel complexity) Moderate (Support vectors) Moderate Limited (Non-linear data)

(a) Model 3A accuracy (b) Model 3B accuracy

(c) KNN accuracy (d) SVM accuracy

Figure 9. Comparison of accuracy metrics for different models.

its predictions makes it slower during prediction
compared to pre-trained neural networks.

In addition to evaluating the accuracy and computa-
tional efficiency of the models, confusion matrices are
illustrated in figure 9. Also, a comparative analysis of
classification reports, which is shown in table 3, provide
deeper insights into the different models’ performance
across different classes. Among all the models, model
3A demonstrates the most robust classification perfor-
mance, with consistently high scores across all classes.
The precision and recall values indicate balanced and
accurate classification for both LoS and NLoS condi-
tions at 2.4 GHz and 5 GHz. Model 3B also exhibits

high accuracy, reaching 90% overall. However, it con-
sistently performs slightly lower than model 3A in all
categories. KNN, which is a simpler model compared
to neural networks, achieves an accuracy of 82%. The
confusion matrix reveals that while KNN performs well
in detecting 2.4 GHz LoS, its performance significantly
drops for 2.4 GHz NLoS and 5 GHz LoS. The 5 GHz
NLoS class shows a reasonable balance, but overall,
the model’s accuracy and recall are notably lower than
the neural network models. SVM, which uses the RBF
kernel, achieves the lowest accuracy among the com-
pared models at 77%. The confusion matrix highlights
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Table 3. Performance comparison of classification models.

Class/Metric Model 3A (%) Model 3B (%) KNN (%) SVM (%)

2.4 GHz LoS
Precision: 96.0 Precision: 96.0 Precision: 93.1 Precision: 91.0

Recall: 95.0 Recall: 94.0 Recall: 94.9 Recall: 94.0
F1-Score: 96.0 F1-Score: 95.0 F1-Score: 94.0 F1-Score: 93.0

2.4 GHz NLoS
Precision: 93.0 Precision: 87.0 Precision: 73.1 Precision: 77.0

Recall: 87.0 Recall: 86.0 Recall: 79.0 Recall: 79.0
F1-Score: 90.0 F1-Score: 86.0 F1-Score: 76.0 F1-Score: 78.0

5 GHz LoS
Precision: 95.0 Precision: 90.0 Precision: 85.2 Precision: 79.0

Recall: 93.0 Recall: 85.0 Recall: 75.8 Recall: 75.0
F1-Score: 94.0 F1-Score: 87.0 F1-Score: 80.2 F1-Score: 77.0

5 GHz NLoS
Precision: 90.0 Precision: 90.0 Precision: 87.1 Precision: 88.0

Recall: 97.0 Recall: 94.0 Recall: 88.0 Recall: 88.0
F1-Score: 93.0 F1-Score: 92.0 F1-Score: 87.6 F1-Score: 88.0

Accuracy 93.0 90.0 84.4 84.0

significant challenges in correctly classifying 2.4 GHz
NLoS and 5 GHz LoS.

6. Conclusion
This study explores different ML models for classifying
dual-band Wi-Fi signals, including model 3A, model
3B, KNN, and SVM. Among them, the proposed
model 3A achieves the highest accuracy and shows
strong and balanced performance across both 2.4
GHz and 5 GHz bands, as well as in LoS and
NLoS conditions. It consistently outperforms the other
models in terms of precision, recall, and F1-score.
The feature selection analysis shows that adding more
features gradually improves classification performance,
with the full feature set, i.e., label J, giving the
best results. The confusion matrix and classification
reports further confirm that model 3A can detect subtle
signal differences that other models miss, especially
in challenging NLoS cases. Although KNN and SVM
are simpler, they lack the scalability and accuracy of
model 3A. Overall, model 3A proves to be a reliable
and efficient choice for dual-band signal classification,
which supports smarter and more adaptive Wi-Fi band
selection in complex indoor environments.
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