A Q-Learning and Blockchain Framework for Secure Dynamic Bandwidth Allocation in Heterogeneous IoT

Authors

DOI:

https://doi.org/10.4108/eetiot.10464

Keywords:

Heterogeneous IoT, Dynamic Bandwidth Allocation, Machine Learning, Blockchain, Network Security

Abstract

The rapid expansion of the Internet of Things (IoT) has intensified the challenge of achieving dynamic bandwidth allocation while maintaining security across heterogeneous devices and communication protocols. Conventional static allocation schemes lack adaptability, while existing learning-based or blockchain-based approaches typically optimize performance or trust in isolation. To address this gap, this paper proposes a hybrid framework that integrates Q-learning–based adaptive bandwidth allocation with a lightweight, permissioned blockchain-based trust mechanism. The framework is evaluated through MATLAB-based simulations involving 100 heterogeneous IoT devices under dynamic traffic conditions and adversarial behavior. Performance is compared against multiple baselines, including static allocation, learning-only and blockchain-only schemes, classical scheduling algorithms (WFQ and DRR), and a deep reinforcement learning approach (DQN). The results reveal clear trade-offs among bandwidth utilization, fairness, energy consumption, and security. Static and classical schedulers provide predictable fairness but remain vulnerable to malicious activity. Learning-only and deep reinforcement learning approaches improve adaptability but lack intrinsic trust awareness, while blockchain-only enforcement enhances security at the expense of responsiveness. By coupling adaptive decision-making with trust validation, the proposed hybrid framework achieves a balanced operating point, offering stable bandwidth utilization, improved energy efficiency, and robust attack resilience under noisy and uncertain conditions. These findings highlight the importance of aligning learning mechanisms with trust-aware constraints for secure and scalable bandwidth management in heterogeneous IoT networks.

Downloads

Download data is not yet available.

References

[1] Alatram, A., Sikos, L. F., Johnstone, M., Szewczyk, P., & Kang, J. J., "DoS/DDoS-MQTT-IoT: A dataset for evaluating intrusions in IoT networks using the MQTT protocol," Computer Networks, vol. 231, p. 109809, 2023. https://doi.org/10.1016/j.comnet.2023.109809

[2] Hong, J., Hong, Y-G., de Foy, X., Kovatsch, M., Schooler, E., and D. Kutscher, "Internet of Things (IoT) Edge Challenges and Functions", RFC 9556 Internet Research Task Force (IRTF), April 2024, https://www.rfc-editor.org/info/rfc9556.

[3] Bukhowah, R., Aljughaiman, A., & Rahman, M. H. (2024). Detection of dos attacks for IoT in information-centric networks using machine learning: Opportunities, challenges, and future research directions. Electronics, 13(6), 1031. https://doi.org/10.3390/electronics13061031

[4] Gelgi, M., Guan, Y., Arunachala, S., Samba Siva Rao, M., & Dragoni, N. (2024). Systematic literature review of IoT botnet DDOS attacks and evaluation of detection techniques. Sensors, 24(11), 3571. https://doi.org/10.3390/s24113571

[5] Hurtado Sanchez, J. A., Casilimas, K., & Caicedo Rendon, O. M. (2022). Deep reinforcement learning for resource management on network slicing: A survey. Sensors, 22(8), 3031. https://doi.org/10.3390/s22083031

[6] Zhou, Q., Zhu, J., Zhang, J., Jia, Z., Huberman, B., & Chang, G. K. (2020, May). Intelligent bandwidth allocation for latency management in NG-EPON using reinforcement learning method. In 2020 Conference on Lasers and Electro-Optics (CLEO) (pp. 1-2). IEEE. http://dx.doi.org/10.48550/arXiv.2001.07698.

[7] Ganesan, E., Hwang, I. S., Liem, A. T., & Ab-Rahman, M. S. (2021, April). 5G-enabled tactile internet resource provision via software-defined optical access networks (SDOANs). In Photonics (Vol. 8, No. 5, p. 140). MDPI. https://doi.org/10.3390/photonics8050140.

[8] Arshad, Q. U. A., Khan, W. Z., Azam, F., Khan, M. K., Yu, H., & Zikria, Y. B. (2023). Blockchain-based decentralized trust management in IoT: systems, requirements and challenges. Complex & Intelligent Systems, 9(6), 6155-6176. http://dx.doi.org/10.1007/s40747-023-01058-8

[9] Obaidat, M. A., Rawashdeh, M., Alja’afreh, M., Abouali, M., Thakur, K., & Karime, A. (2024). Exploring IoT and blockchain: a comprehensive survey on security, integration strategies, applications and future research directions. Big Data and Cognitive Computing, 8(12), 174. https://doi.org/10.3390/bdcc8120174

[10] Haque, E. U., Abbasi, W., Almogren, A., Choi, J., Altameem, A., Rehman, A. U., & Hamam, H. (2024). Performance enhancement in blockchain based IoT data sharing using lightweight consensus algorithm. Scientific Reports, 14(1), 26561. https://doi.org/10.1038/s41598-024-77706-x

[11] Wen, D., Bennis, M., & Huang, K. (2020). Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of Partitioned Edge Learning. IEEE Transactions on Wireless Communications, 19, 8272-8286. https://doi.org/10.1109/TWC.2020.3021177.

[12] Hatem, J., Dhaini, A., & Elbassuoni, S. (2019). Deep Learning-Based Dynamic Bandwidth Allocation for Future Optical Access Networks. IEEE Access, 7, 97307-97318. https://doi.org/10.1109/ACCESS.2019.2929480.

[13] Wong, E., & Ruan, L. (2023). Towards 6G: fast and self-adaptive dynamic bandwidth allocation for next-generation mobile fronthaul. Journal of Optical Communications and Networking, 15, C203-C211. https://doi.org/10.1364/JOCN.483983.

[14] Hu, Y., Li, Q., Chai, Y., Wu, D., Lu, L., Shi, N., Teng, Y., & Zhang, Y. (2024). AI Service Deployment and Resource Allocation Optimization Based on Human-Like Networking Architecture. IEEE Internet of Things Journal, 11, 24795-24813. https://doi.org/10.1109/JIOT.2024.3384546.

[15] Liem, A., Hwang, I., Ganesan, E., Taju, S., & Sandag, G. (2023). A Novel Temporal Dynamic Wavelength Bandwidth Allocation Based on Long-Short-Term-Memory in NG-EPON. IEEE Access, 11, 82095-82107. https://doi.org/10.1109/ACCESS.2023.3299037.

[16] Żotkiewicz, M., Szałyga, W., Domaszewicz, J., Bąk, A., Kopertowski, Z., & Kozdrowski, S. (2021). Artificial Intelligence Control Logic in Next-Generation Programmable Networks. Applied Sciences. https://doi.org/10.3390/app11199163.

[17] Chen, Y. (2023). An adaptive heuristic algorithm to solve the network slicing resource management problem. International Journal of Communication Systems, 36. https://doi.org/10.1002/dac.5463.

[18] Chen, W., & Chen, L. (2024). 3.53-TOPS/W EEAIP: An Energy-Efficient Artificial Intelligence Hardware Architecture for Edge AI Applications. IEEE Transactions on Consumer Electronics, 70, 4333-4344. https://doi.org/10.1109/TCE.2023.3323644.

[19] Lin, Z., Bi, S., & Zhang, Y. (2020). Optimizing AI Service Placement and Resource Allocation in Mobile Edge Intelligence Systems. IEEE Transactions on Wireless Communications, 20, 7257-7271. https://doi.org/10.1109/TWC.2021.3081991.

[20] Qureshi, M., & Tekin, C. (2020). Fast Learning for Dynamic Resource Allocation in AI-Enabled Radio Networks. IEEE Transactions on Cognitive Communications and Networking, 6, 95-110. https://doi.org/10.1109/TCCN.2019.2953607.

[21] Iyer, V., Lee, S., Lee, S., Kim, J., Kim, H., & Shin, Y. (2023). Automated Backend Allocation for Multi-Model, On-Device AI Inference. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 7, 1 - 33. https://doi.org/10.1145/3626793.

[22] Goswami, P., Mukherjee, A., Maiti, M., Tyagi, S., & Yang, L. (2021). A Neural-Network-Based Optimal Resource Allocation Method for Secure IIoT Network. IEEE Internet of Things Journal, 9, 2538-2544. https://doi.org/10.1109/JIOT.2021.3084636.

[23] Moudoud, H., & Cherkaoui, S. (2023). Empowering Security and Trust in 5G and Beyond: A Deep Reinforcement Learning Approach. IEEE Open Journal of the Communications Society, 4, 2410-2420. https://doi.org/10.1109/OJCOMS.2023.3313352.

[24] Bhardwaj, V., Shareef, A., Singh, R., Gharban, H., & Essa, I. (2025). Improving IoT Service Quality with the Allocation of Dynamic Bandwidth. 2025 3rd International Conference on Disruptive Technologies (ICDT), 1276-1281. https://doi.org/10.1109/ICDT63985.2025.10986304.

[25] Liang, W., Zhao, J., Liu, Y., Liang, Y., & Li, J. (2023). Fairness resource allocation based on blockchain for secure communication in integrated IoT. EURASIP Journal on Advances in Signal Processing, 2023, 1-23. https://doi.org/10.1186/s13634-023-01075-2.

[26] Tsai, W., Wang, S., Liang, Y., & Yang, D. (2022). Optimized Bandwidth Allocation for MEC Server in Blockchain-Enabled IoT Networks. Scientific Programming. https://doi.org/10.1155/2022/6129150.

[27] Liao, C., Shuai, H., & Wang, L. (2019). RNN-Assisted Network Coding for Secure Heterogeneous Internet of Things With Unreliable Storage. IEEE Internet of Things Journal, 6, 7608-7622. https://doi.org/10.1109/JIOT.2019.2902376.

[28] Abedin, S., Alam, M., Kazmi, S., Tran, N., Niyato, D., & Hong, C. (2019). Resource Allocation for Ultra-Reliable and Enhanced Mobile Broadband IoT Applications in Fog Network. IEEE Transactions on Communications, 67, 489-502. https://doi.org/10.1109/TCOMM.2018.2870888.

[29] Rouhifar, M., Hedayati, A., & Aghazarian, V. (2024). DITRA: an efficient event-driven multi-objective optimization algorithm for bandwidth allocation in IoT environments. Cluster Computing, 1-21. https://doi.org/10.1007/s10586-023-04214-4.

[30] Chakour, I., Daoui, C., Baslam, M., Sainz-De-Abajo, B., & Garcia-Zapirain, B. (2024). Strategic Bandwidth Allocation for QoS in IoT Gateway: Predicting Future Needs Based on IoT Device Habits. IEEE Access, 12, 6590-6603. https://doi.org/10.1109/ACCESS.2024.3351111.

[31] Guan, X., Yu, B., Yu, T., & Cai, Y. (2023). Minimizing age of information in the uplink multi-user networks via dynamic bandwidth allocation. China Communications, 20, 287-301. https://doi.org/10.23919/JCC.fa.2022-0586.202304.

[32] Thangavelu, A., & Rajendran, P. (2024). Energy-Efficient Secure Routing for a Sustainable Heterogeneous IoT Network Management. Sustainability. https://doi.org/10.3390/su16114756.

[33] Yang, H., Alphones, A., Zhong, W., Chen, C., & Xie, X. (2020). Learning-Based Energy-Efficient Resource Management by Heterogeneous RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Transactions on Industrial Informatics, 16, 5565-5576. https://doi.org/10.1109/TII.2019.2933867.

[34] Gan, Z., Chen, Y., Xiao, Y., Zhou, D., Feng, C., & Shen, B. (2025). Privacy preservation-driven communication-computing collaboration for multi-mode heterogeneous IoT network management. IET Commun., 19. https://doi.org/10.1049/cmu2.70003.

[35] Sood, K., Karmakar, K., Yu, S., Varadharajan, V., Pokhrel, S., & Xiang, Y. (2020). Alleviating Heterogeneity in SDN-IoT Networks to Maintain QoS and Enhance Security. IEEE Internet of Things Journal, 7, 5964-5975. https://doi.org/10.1109/JIOT.2019.2959025.

[36] Selvaraju, S., Balador, A., Fotouhi, H., Vahabi, M., & Björkman, M. (2021). Network Management in Heterogeneous IoT Networks. 2021 International Wireless Communications and Mobile Computing (IWCMC), 1581-1586. https://doi.org/10.1109/IWCMC51323.2021.9498801.

[37] Tseng, L., Wong, L., Otoum, S., Aloqaily, M., & Ben-Othman, J. (2020). Blockchain for Managing Heterogeneous Internet of Things: A Perspective Architecture. IEEE Network, 34, 16-23. https://doi.org/10.1109/MNET.001.1900103.

[38] Kherraf, N., Alameddine, H., Sharafeddine, S., Assi, C., & Ghrayeb, A. (2019). Optimized Provisioning of Edge Computing Resources With Heterogeneous Workload in IoT Networks. IEEE Transactions on Network and Service Management, 16, 459-474. https://doi.org/10.1109/TNSM.2019.2894955.

[39] Khan, A., Rizwan, A., Ahmad, R., Jin, W., Khan, Q., Lim, S., & Kim, D. (2024). Hetero-FedIoT: A Rule-Based Interworking Architecture for Heterogeneous Federated IoT Networks. IEEE Internet of Things Journal, 11, 5920-5938. https://doi.org/10.1109/JIOT.2023.3308579.

[40] Zafar, A., Samad, F., Syed, H., Ibrahim, A., Alohaly, M., & Elsadig, M. (2023). An Advanced Strategy for Addressing Heterogeneity in SDN-IoT Networks for Ensuring QoS. Applied Sciences. https://doi.org/10.3390/app13137856.

[41] Hussain, F., Hassan, S., Hussain, R., & Hossain, E. (2019). Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges. IEEE Communications Surveys & Tutorials, 22, 1251-1275. https://doi.org/10.1109/COMST.2020.2964534.

[42] Javadpour, A., Wang, G., & Rezaei, S. (2020). Resource Management in a Peer to Peer Cloud Network for IoT. Wireless Personal Communications, 115, 2471 - 2488. https://doi.org/10.1007/s11277-020-07691-7.

[43] Kadiyala, R., Narayana, C. L., Ramu, S. C., Putta, N., Pabboju, S. S., & Reddy, B. R. (2024). Trust-Aware Federated Learning with Differential Privacy for Secure AIoT in Critical Infrastructures. EAI Endorsed Transactions on Internet of Things, 11.

Downloads

Published

03-02-2026

How to Cite

1.
Obied AS, Abdullah AS, Taha HM, Tarish SA. A Q-Learning and Blockchain Framework for Secure Dynamic Bandwidth Allocation in Heterogeneous IoT. EAI Endorsed Trans IoT [Internet]. 2026 Feb. 3 [cited 2026 Feb. 13];11. Available from: https://publications.eai.eu/index.php/IoT/article/view/10464