Analysis of Current Advancement in 3D Point Cloud Semantic Segmentation

Authors

  • Koneru Pranav Sai Vellore Institute of Technology University image/svg+xml
  • Sagar Dhanraj Pande Vellore Institute of Technology University image/svg+xml

DOI:

https://doi.org/10.4108/eetiot.4495

Keywords:

Point cloud, Semantic segmentation, Datasets, Deep learning

Abstract

INTRODUCTION: The division of a 3D point cloud into various meaningful regions or objects is known as point cloud segmentation.

OBJECTIVES: The paper discusses the challenges faced in 3D point cloud segmentation, such as the high dimensionality of point cloud data, noise, and varying point densities.

METHODS: The paper compares several commonly used datasets in the field, including the ModelNet, ScanNet, S3DIS, and Semantic 3D datasets, ApploloCar3D, and provides an analysis of the strengths and weaknesses of each dataset. Also provides an overview of the papers that uses Traditional clustering techniques, deep learning-based methods, and hybrid approaches in point cloud semantic segmentation. The report also discusses the benefits and drawbacks of each approach.

CONCLUSION: This study sheds light on the state of the art in semantic segmentation of 3D point clouds.

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

References

Chen, X.. Ma, H.. Wan, J.. Li, B.. Xia, T.: Multi-view 3D object detection network for au- tonomous driving. CVPR, (2017). DOI: https://doi.org/10.1109/CVPR.2017.691

Juana, V. H., Abhinav, V.: Chapter 12 - Semantic scene segmentation for robotics, Editor(s): Alexandros Iosifidis, Anastasios Tefas, Deep Learning for Robot Perception and Cognition. Academic Press, 279-311, (2022). DOI: https://doi.org/10.1016/B978-0-32-385787-1.00017-8

Huang, X., Mei, G., Zhang, J., Abbas, R.: A comprehensive survey on point cloud registra- tion, arXiv:2103.02690, (2021).

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(12), 4338–4364 (2021). DOI: https://doi.org/10.1109/TPAMI.2020.3005434

Lu, H., Shi, H.: Deep learning for 3D point cloud understanding: A survey. arXiv:2009.08920, (2020).

Nguyen, A., Le, B.: 3D point cloud segmentation: A survey. 6th IEEE Conference on Ro- botics, Automation and Mechatronics (RAM), pp. 225-230, Philippines, (2013). DOI: https://doi.org/10.1109/RAM.2013.6758588

Garcia, G. A., O-Escolano, S., Oprea, S., Martinez, V.V., Rodriguez, G. J.: A Review on Deep Learning Techniques Applied to Semantic Segmentation. https://arxiv.org/abs/1704.06857, (2017).

Dataset http://3dshapenets.cs.princeton.edu/

Ibrahim, M., Akhtar, N., Wise, M., Mian, M.: PC-Urban Outdoor dataset for 3D point Cloud semantic segmentation. IEEE Dataport, (2021). DOI: https://doi.org/10.1109/ACCESS.2021.3062547

Dataset https://www.semantic3d.net/

Dataset http://3Dsemantics.stanford.edu/.

Dataset www.semantic-kitti.org.

Dataset https://aihabitat.org/datasets/hm3dsemantics/

Dataset https://apolloscape.auto/car_instance.html

Gould, S., Fulton, R., Koller, D.: Decomposing a Scene into Geometric and Semantically Consistent Regions. Proceedings of the IEEE International Conference on Computer Vision pp. 1-8, (2009). DOI: https://doi.org/10.1109/ICCV.2009.5459211

Ouali, Y., Hudelot, C., Tami, M.: Semi-Supervised Semantic Segmentation with Cross-Con- sistency Training, arxiv.org/pdf/2003.09005, CVPR, (2020). DOI: https://doi.org/10.1109/CVPR42600.2020.01269

Lee, D-H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML, vol. 3, pp. 2, (2013).

Dai, J., He, K., Sun, J.: BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1635-1643, Santiago, Chile, (2015). DOI: https://doi.org/10.1109/ICCV.2015.191

Souly, N., Spampinato, C., Shah, M.: Semi supervised semantic segmentation using gener- ative adversarial network. In Proceedings of the IEEE International Conference on Com- puter Vision, pp. 5688–5696, (2017). DOI: https://doi.org/10.1109/ICCV.2017.606

Hung, W.C., Yi-Hsuan, T., Yan-Ting, L., Yen-Yu, L., Ming-Hsuan, Y.: Adversarial learn- ing for semi-supervised semantic segmentation. arXiv:1802.07934, (2018).

Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., S- Huang, T.: Revisiting dilated convolution: A simple approach for weakly- and semi-supervised semantic segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018). DOI: https://doi.org/10.1109/CVPR.2018.00759

Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5267–5276, (2019). DOI: https://doi.org/10.1109/CVPR.2019.00541

French, G., Aila, T., Laine, S., Mackiewicz, M., Finlayson, G.: Consistency regularization and cutmix for semi-supervised semantic segmentation. arXiv preprint arXiv:1906.01916, (2019).

Song,C., Huang, Y., Ouyang, W., Wang, L.: Box-driven class-wise region masking and fill- ing rate guided loss for weakly supervised semantic segmentation, 2019 IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition, pp. 3131-31402019, (2019). DOI: https://doi.org/10.1109/CVPR.2019.00325

Lingni, M., Stückler, J., Kerl, C., Cremers, D.: Multi-view deep learning for consistent se- mantic mapping with RGB-D cameras. pp. 598-605, (2017).

Sellami, A., Tabbone, S.: Video semantic segmentation using deep multi-view representa- tion learning. 25th International Conference on Pattern Recognition (ICPR), pp. 1-7, Milan, Italy, (2021). DOI: https://doi.org/10.1109/ICPR48806.2021.9413239

Poux, F., Billen, R. Voxel-based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods. ISPRS Int. J. Geo-Inf. 8(213), (2019). DOI: https://doi.org/10.3390/ijgi8050213

Liu, Z., Tang, H., Y-L. Song, H.: Point-Voxel CNN for Efficient 3D Deep Learning, arxiv.org/abs/1907.03739v2, (2019).

Charles, R., Qi, Su, H., Mo, K., J.-Guibas, L.; PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652-660, (2017). DOI: https://doi.org/10.1109/CVPR.2017.16

Abdul, N., Teferle, N., Li, J., Lindenbergh, R., Parvaz, S.: Investigation of PointNet for Semantic Segmentation of Large-Scale Outdoor Point Clouds. ISPRS, (2021).

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learning on point sets in a metric space, NeurIPS, (2017).

Turgut, K., Dutagaci, H., Galopin, G.: Segmentation of structural parts of rosebush plants with 3D point-based deep learning methods. Plant Methods. 18(20), (2022). DOI: https://doi.org/10.1186/s13007-022-00857-3

Wu, W., Qi, Z., Fuxin, L.: PointConv: Deep Convolutional Networks on 3D Point Clouds, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9613-9622, CA, USA, (2019). DOI: https://doi.org/10.1109/CVPR.2019.00985

Yuan, W., Point Cloud Semantic Segmentation using Graph Convolutional Network.

Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M. M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM TOG, (2019). DOI: https://doi.org/10.1145/3326362

Liang, Z., Yang, M., Deng, L., Wang, C., Wang, B.: Hierarchical Depthwise Graph Convo- lutional Neural Network for 3D Semantic Segmentation of Point Clouds. 2019 International Conference on Robotics and Automation (ICRA), pp. 8152-8158, Canada, (2019). DOI: https://doi.org/10.1109/ICRA.2019.8794052

Zhang, F., Fang, J., Wah, B., Torr, P.: Deep FusionNet for Point Cloud Semantic Segmen- tation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12369. Springer, Cham. (2020). DOI: https://doi.org/10.1007/978-3-030-58586-0_38

Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with super- point graphs in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition, pp. 4558– 4567, (2018). DOI: https://doi.org/10.1109/CVPR.2018.00479

Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C-H., Jia, J.: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10432-10440, (2019). DOI: https://doi.org/10.1109/ICCV.2019.01053

Downloads

Published

28-11-2023

How to Cite

[1]
K. P. Sai and S. D. Pande, “Analysis of Current Advancement in 3D Point Cloud Semantic Segmentation”, EAI Endorsed Trans IoT, vol. 10, Nov. 2023.

Most read articles by the same author(s)