A Survey on Nature-Inspired Control Methods for IoT and Communication Networks
DOI:
https://doi.org/10.4108/eetiot.9383Keywords:
network, nature, control, TCP/IPAbstract
Modern Internet of Things (IoT) and communication networks operate under dynamic, large-scale, and resource-constrained conditions where conventional control can falter. This survey synthesizes 108 peer-reviewed (including preprints) studies (2007–2025) on nature-inspired control mapped to the TCP/IP stack across the classes of network functions. The survey introduces a three-axis taxonomy (TCP/IP layer × biological metaphor × function) and a unified KPI scheme with a normalization formula to compare heterogeneous reports. Aggregated evidence indicates typical gains of 20–50% energy reduction, 25–40% delivery-ratio improvement, 10–35% latency reduction, and > 0.95 F1 for immune-inspired intrusion detection, when compared to canonical baselines. This survey further makes explicit how few studies validate on real hardware or under adversarial conditions. Moreover, this survey analyzes real-time constraints, hyperparameter sensitivity, and integration pathways with 6LoWPAN/RPL, TSCH/6TiSCH, MQTT, and CoAP, outlining steps toward deployable, explainable, and deterministic nature-inspired control.
Downloads
References
[1] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registration of an Autonomous System (AS),” IETF RFC 1930, 1996.
[2] Open systems interconnection (OSI), available at https://www.iso.org/ics/35.100/x/, cited 2025.
[3] R. Braden, “Requirements for Internet Hosts- Communication,” IETF RFC 1122, 1989.
[4] B. Yu, H.-Q. Wang, L. Ju, K.-X. Hou, Z.-D. Xiao, J.-L. Zhan et al., “A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks,” Natl. Sci. Rev., vol. 12, no. 2, Art. nwae435, Feb. 2025, doi: 10.1093/nsr/nwae435.
[5] W. Guo, M. Abbaszadeh, L. Lin, J. Charmet, P. Thomas, Z. Wei, B. Li, and C. Zhao, “Molecular Physical Layer for 6G in Wave-Denied Environments,” IEEE Commun. Mag., vol. 59, no. 5, pp. 33 – 39, May 2021, doi: 10.1109/MCOM.001.2000958.
[6] P. Hofman, J. A. Cabrera, G. Schulte, and F. H. P. Fitzek, “A biologically inspired and protein-based bio-cyber interface for the Internet of Bio-Nano Things,” Biosens. Bioelectron.: X, vol. 22, Art. 100572, Mar. 2025, doi: 10.1016/j.biosx.2024.100572.
[7] C. Amarnatha Sarma, S. Inthiyaz, and B. T. P. Madhav, “A Bio-Inspired Compact Fractal Antenna Design for 5G Applications,” Int. J. Electronics & Electr. Eng. Res., vol. 11, no. 1, pp. 176–184, Mar. 2023, doi: 10.37391/IJEER.110125.
[8] A. Raza, Y. Chen, Z. Gong, M. K. Ishfaq, and Y. Chen, “A Compact Bio-Inspired Microstrip Antenna (Bi-MPA) for Medical Microwave Imaging Applications,” in Proc. Int. Conf. Bio-Inspired Inf. Commun. Technol. (BICT 2024), LNICSIT 592, Springer, Cham, Feb. 2025, pp. 121–129, doi: 10.1007/978-3-031-81599-7_12.
[9] U. Keshwala, S. Rawat, and K. Ray, “Design and Comparative Analysis of Compact Bio-Inspired Leaf-Shaped Antenna Using Different Substrate Materials for UWB and X-Band Applications,” J. Nano- Electron. Phys., vol. 13, no. 2, Art. 02018, Apr. 2021, doi: 10.21272/jnep.13(2).02018.
[10] H. Obata, R. Hamamoto, C. Takano, and K. Ishida, “SPMAC: A Media Access Control Method Based on the Synchronization Phenomena of Coupled Oscillators over WLAN,” IEICE Trans. Inf. Syst., vol. E98-D, no. 12, pp. 2060–2070, Dec. 2015, doi: 10.1587/transinf.2015PAP0004.
[11] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A Hybrid MAC for Wireless Sensor Networks,” IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 511–524, Jun. 2008, doi: 10.1109/TNET.2007.900704.
[12] Y. Kubo and K. Sekiyama, “Communication Timing Control with Interference Detection for Wireless Sensor Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2007, Art. ID 54968, 10 pp., 2007, doi: 10.1155/2007/54968.
[13] E. Udoh and V. Getov, “Layered-MAC: An Energy-Protected and Efficient Protocol for Wireless Sensor Networks,” in Mobile Wireless Middleware, Operating Systems and Applications, EAI/Springer ICC, Springer, Cham, May 2022, pp. 45–61, doi: 10.1007/978-3-030-98671-1_4.
[14] A. Javadpour, “An Optimize-Aware Target Tracking Method with Combine MAC Layer and Active Nodes in Wireless Sensor Networks,” arXiv:2005.06598, Apr. 2020, doi: 10.48550/arXiv.2005.06598.
[15] U. -S. Yu, H. -H. Choi and J. -R. Lee, "Kuramoto-Desync: Distributed and Fair Resource Allocation in a Wireless Network," in IEEE Access, vol. 7, pp. 104769-104776, 2019, doi: 10.1109/ACCESS.2019.2932425.
[16] A. Mutazono, M. Sugano and M. Murata, “Energy Efficient Self-Organizing Control for Wireless Sensor Networks Inspired by Calling Behavior of Frogs,” Computer Communications, vol. 35, no. 4, pp. 661-669, Mar. 2012, doi: 10.1016/j.comcom.2011.09.013.
[17] J. Lee, A-H. Lee, V. Leung, F. Laiwalla, M. A. Lopez-Gordo, L. Larson and A. Nurmikko, “An Asynchronous Wireless Network for Capturing Event-Driven Data from Large Populations of Autonomous Sensors,” arXiv preprint arXiv:2305.12293, May 2023, doi: 10.48550/arXiv.2305.12293.
[18] I. Al-Nader, A. Lasebae, R. Raheem, and G. E. Ngondi, “A Novel Bio-Inspired Bat Node Scheduling Algorithm for Dependable Safety-Critical Wireless Sensor Network Systems,” Sensors, vol. 24, no. 6, Art. 1928, Mar. 2024, doi: 10.3390/s24061928.
[19] M. N. Fauzan, R. Munadi, S. Sumaryo and H. H. Nuha, “Enhanced Grey Wolf Optimization for Efficient Transmission Power Optimization in Wireless Sensor Network,” Applied System Innovation, vol. 8, no. 2, Art. 36, Mar. 2025, doi: 10.3390/asi8020036.
[20] R. Hamamoto, C. Takano, H. Obata, M. Aida, and K. Ishida, “Proposal for Designing Method of Radio Transmission Range to Improve both Power Saving and Communication Reachability based on Target Problem,” IEICE Trans. Commun., vol. E99-B, no. 11, pp. 2271–2279, Nov. 2016, doi: 10.1587/transcom.2016NEP0006.
[21] B. Zhou and Y. Li, “Presenting a New Approach for Clustering Optimization in Wireless Sensor Networks Using Fuzzy Cuckoo Search Algorithm,” Int. J. Adv. Computer Science and Applications, vol. 15, no. 5, pp. 253–262, 2024, doi:10.14569/IJACSA.2024.0150525.
[22] H. Liu, Z. Tang, and Y. Deng, “Improved LEACH Algorithm Based on Cuckoo Search Mechanism,” Academic Journal of Computing & Information Science, vol. 7, no. 5, pp. 55–64, 2024, doi:10.25236/AJCIS.2024.070507.
[23] D. Chen et al., “Energy Efficiency Optimization for SLIPTEnabled NOMA System,” Photonics, vol. 10, no. 7, Art. 791, 2023, doi: 10.3390/photonics10070791.
[24] M. Sangtani, “Hybrid Grey Wolf Optimization and Crow Search Algorithm for Power Allocation in MIMO-NOMA Systems,” Journal of Networking and Communication Systems, vol. 3, no. 2, Apr. 2020, doi: 10.46253/jnacs.v3i2.a2.
[25] M. Chora´s, R. Kozik, and I. Maciejewska, “Emerging Cyber Security: Bio-Inspired Techniques and MITM Detection in IoT,” in Combatting Cyber-Crime and Cyber-Terrorism, B. Akhgar and B. Brewster, Eds., Adv. Sci. Technol. Secur. Appl., Springer, Cham, 2016, pp. 151–165, doi: 10.1007/978-3-319-38930-1_11.
[26] B. Issac, K. Fryer, and S. M. Jacob, “Flow-Based Detection of Botnets through Bio-Inspired Optimisation of Machine Learning,” arXiv:2412.05688, Dec. 2024, doi: 10.48550/arXiv.2412.05688.
[27] G. Kaur, V. Balyan, and S. H. Gupta, “Nature-Inspired Optimization of IoT Network for Delay-Resistant and Energy-Efficient Applications,” Sci. Rep., vol. 15, Art. 9902, Mar. 2025, doi: 10.1038/s41598-025-95138-z.
[28] N. K. Rajpoot, P. Singh, and B. Pant, “Nature-Inspired Load- Balancing Approach in Cloud Computing Environment for Smart Healthcare,” in Proc. Int. Conf. Information Management & Machine Intelligence (ICIMMI 2022), Jaipur, India, Dec. 23–24 2022, pp. 1–6, doi: 10.1145/3590837.3590943.
[29] J.-M. Kelif, M. Coupechoux and P. Godlewski, “A Fluid Model for Performance Analysis in Cellular Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2010, Art. no. 435189, Aug. 2010, doi: 10.1155/2010/435189.
[30] D. Tian, J. Zhou, H. Qi, Y. Lu, Y. Wang, J. Wang, and A. He, “A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks,” J. Appl. Math., vol. 2014, Art. 920123, pp. 1–13, 2014, doi: 10.1155/2014/920123.
[31] M. Farooq, Bee-Inspired Protocol Engineering: From Nature to Networks. Berlin, Germany: Springer-Verlag, 2009, doi: 10.1007/978-3-540-85954-3.
[32] A. Sharma, S. Sharma, and D. Gupta, “Ant Colony Optimization Based Routing Strategies for Internet of Things,” EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, vol. 10, no. 2, pp. 998–1009, Jun. 2023, doi: 10.5109/6793654.
[33] M. Ahirwar, “Energy Efficient Cluster-Based Routing Protocol for Wireless Sensor Network Using Hybrid Bio-Inspired Swarm Intelligence Algorithm,” International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 23 s, pp. 2227–2238, Oct. 2024.
[34] J. D. K. Hezekiah et al., “Nature-Inspired Energy Enhancement Technique for Wireless Sensor Networks,” Energies, vol. 16, no. 20, Art. 7021, 2023, doi: 10.3390/en16207021.
[35] S. M. Siddaramu and R. K. Ramaswamy, “Optimal Wireless Sensor Network Ant-Lifetime Routing Algorithm Using Multi-Phase Pheromone,” Ingénierie des Systèmes d’Information, vol. 30, no. 1, pp. 83–100, 2025, doi: 10.18280/isi.300108.
[36] P. S. Ramesh et al., “Contextual Cluster-Based Glow-Worm Swarm Optimization (GSO) Coupled Wireless Sensor Networks for Smart Cities,” Sensors, vol. 23, no. 14, Art. 6639, Jul. 2023, doi: 10.3390/s23146639.
[37] C. R. da C. Bento and E. C. G. Wille, “Bio-inspired routing algorithm for MANETs based on fungi networks,” Ad Hoc Networks, vol. 107, Art. 102248, Oct. 2020, doi: 10.1016/j.adhoc.2020.102248.
[38] M. Zhang, C. Xu, J. Guan, R. Zheng, Q. Wu, and H. Zhang, “A Novel Bio-inspired Trusted Routing Protocol for Mobile Wireless Sensor Networks,” KSII Transactions on Internet and Information Systems, vol. 8, no. 1, pp. 74–90, Jan. 2014, doi: 10.3837/tiis.2014.01.005.
[39] M. Faheem et al., “Bio-inspired routing protocol for WSNbased smart grid applications in the context of Industry 4.0,” Transactions on Emerging Telecommunications Technologies, vol. 30, no. 8, Art. e3503, Aug. 2019, doi: 10.1002/ett.3503.
[40] S. Ahmed, M. A. Hossain, P. H. J. Chong, and S. K. Ray, “Bio-Inspired Energy-Efficient Cluster-Based Routing Protocol for the IoT in Disaster Scenarios,” Sensors, vol. 24, no. 16, Art. 5353, Aug. 2024, doi: 10.3390/s24165353.
[41] R. K. Repuri and J. P. Darsy, “Energy-Efficient LoRa Routing for Smart Grids,” Sensors, vol. 23, no. 6, Art. 3072, Mar. 2023, doi: 10.3390/s23063072.
[42] R. Hou et al., “Service-Differentiated QoS Routing Based on Ant Colony Optimisation for Named Data Networking,” Peer-to-Peer Networking and Applications, vol. 12, pp. 740–750, 2019, doi: 10.1007/s12083-018-0669-6.
[43] G. Velusamy and R. Lent, “Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking,” Sensors, vol. 23, no. 1, Art. 310, Jan. 2023, doi: 10.3390/s23010310.
[44] G. Hasegawa and M. Murata, “TCP Symbiosis: Bio-inspired congestion control mechanism for TCP,” in Biologically Inspired Algorithms for Networking and Communications, IGI Global, 2011, pp. 104–131, doi: 10.4018/978-1-61350-092-7.ch006.
[45] X.-W. Yao, W.-L. Wang, S.-H. Yang, and Y.-F. Cen, “Bioinspired self-adaptive rate control for multi-priority data transmission over WLANs,” Computer Communications, vol. 53, pp. 473–483, 2014.
[46] P. Antoniou and A. Pitsillides, “A bio-inspired approach for streaming applications in wireless sensor networks based on the Lotka–Volterra competition model,” Computer Communications, vol. 34, no. 9, pp. 1086–1096, Jun. 2011.
[47] M. Analoui and S. Jamali, “Bio-Inspired Congestion Control: Conceptual Framework, Algorithm and Discussion,” in Advances in Molecular Modeling for Drug Discovery, Springer, 2007, pp. 63–80, doi: 10.1007/978-3-540-72693-7_4.
[48] R. N. Nketsiah, I. E. Agbehadji, R. C. Millham, and E. Freeman, “Bio-Inspired Optimisation Algorithm for Congestion Control in IoT Networks,” in Innovations in Smart Cities Applications VII, Springer, Apr. 2023, pp. 21–32, doi: 10.1007/978-3-031-29860-8_3.
[49] X. Yang, X. Chen, R. Xia, and Z. Qian, “Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimisation,” Sensors, vol. 18, no. 4, Art. 1265, Apr. 2018, doi: 10.3390/s18041265.
[50] R. Yadav and V. Kumar, “Congestion Control Scheme for Link-Quality Improvement Using Bio-Inspired Fuzzy Inference System for CoAP,” International Journal of Communication Systems, vol. 38, no. 4, Art. e6131, Jan. 2025, doi: 10.1002/dac.6131.
[51] R. A. Pravin, X. S. A. Shiny, V. B. Vennila, S. Ramasamy, R. U. Mageswari, and S. S. Kumar, “Adaptive Rendezvous Based Congestion Control in Wireless Sensor Networks Using Bio-Inspired Approaches,” Ingénierie des Systèmes d’Information, vol. 29, no. 6, pp. 2391–2398, Dec. 2024, doi: 10.18280/isi.290626.
[52] T. Daniya, “Hybrid Crow Search and GreyWolf Optimisation Algorithm for Congestion Control in WSN,” Journal of Networking and Communication Systems, vol. 3, no. 3, Art. 4, Jul. 2020, doi: 10.46253/jnacs.v3i3.a4.
[53] S. S. Sefati, B. Arasteh, R. Craciunescu, and C.-R. Comsa, “Intelligent Congestion Control in Wireless Sensor Networks (WSNs) Using Bio-Inspired Algorithms,” Mathematics, vol. 13, no. 4, Art. 597, 2025, doi: 10.3390/math13040597.
[54] S. Malik, K. Gupta, D. Gupta, A. Singh, M. Ibrahim, A. Ortega-Mansilla, N. Goyal, and H. Hamam, “Intelligent Load-Balancing Congestion Control in IoT Using Bacterial Foraging Optimisation,” Electronics, vol. 11, no. 4, Art. 566, 2022, doi: 10.3390/electronics11040566.
[55] Ł. Kułacz and A. Kliks, “Brain-Inspired Data Transmission in Dense Wireless Networks,” Sensors, vol. 21, no. 2, Art. 576, Jan. 2021, doi: 10.3390/s21020576.
[56] R. Somula, Y. Cho and B. K. Mohanta, “SWARAM: Osprey Optimization Algorithm-Based Energy-Efficient Cluster Head Selection for Wireless Sensor Network-Based Internet of Things,” Sensors, vol. 24, no. 2, Art. no. 521, Jan. 2024, doi: 10.3390/s24020521.
[57] N. S. Radam, S. T. F. Al-Janabi and K. S. Jasim, “Multi-Controllers Placement Optimization in SDN by the Hybrid HSA-PSO Algorithm,” Computers, vol. 11, no. 7, Art. 111, Jul. 2022, doi: 10.3390/computers11070111.
[58] N. S. Radam, S. T. F. Al-Janabi and K. S. Jasim, “Using Metaheuristics (SA-MCSDN) Optimized for Multi-Controller Placement in Software-Defined Networking,” Future Internet, vol. 15, no. 1, Art. 39, Jan. 2023, doi: 10.3390/fi15010039.
[59] Z. Jiang, W. Li, and M. Yang, “Joint Optimization of Controller Placement and Switch Assignment in SDN-based LEO Satellite Networks,” arXiv preprint arXiv:2504.13594, Apr. 2025, doi: 10.48550/arXiv.2504.13594.
[60] R. S. Rathore et al., “Hybrid WGWO: Whale Grey Wolf Optimization-Based Novel Energy-Efficient Clustering for EH-WSNs,” EURASIP Journal onWireless Communications and Networking, vol. 2020, Art. 101, May 2020, doi: 10.1186/s13638-020-01721-5.
[61] G. Eleftherakis, F. Baxhaku, and A. Vasilescu, “Bioinspired Adaptive Architecture for Wireless Sensor Networks,” in Proc. 26th Pan-Hellenic Conf. Informatics (PCI), Athens, Greece, Nov. 25–27 2022, pp. 1–7, doi: 10.1145/3575879.3575976.
[62] X. Liu and Y. Deng, “A new QoS-aware service discovery technique in the Internet of Things using whale optimization and genetic algorithms,” J. Eng. Appl. Sci., vol. 71, Art. 4, Jan. 2024, doi: 10.1186/s44147-023-00334-1.
[63] G. Kumar, R. Saha, M. Conti, T. Devgun and R. Thomas, “GREPHRO: Nature-inspired optimization duo for Internet-of-Things,” Internet of Things, vol. 25, Art. no. 101067, 2024, doi: 10.1016/j.iot.2024.101067.
[64] S. N. Mthunzi, E. Benkhelifa, T. Bosakowski, and S. Hariri, “A Bio-Inspired Approach to Cyber Security,” in Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, 2019.
[65] B. Li, Y. Chang, H. Huang, W. Li, T. Li, and W. Chen, “Artificial immunity based distributed and fast anomaly detection for Industrial Internet of Things,” Future Generation Computer Systems, vol. 148, pp. 367–379, 2023, doi: 10.1016/j.future.2023.06.011
[66] Y. Harbi, S. Merat, Z. Aliouat, and S. Harous, “Bioinspired Intrusion Detection System for Internet of Things Networks Security,” in Proc. Cognitive Models and Artificial Intelligence Conf. (AICCONF ’24), Istanbul, Türkiye, May 25–26 2024, pp. 1–6, doi: 10.1145/3660853.3660856.
[67] V. Soni, S. Saxena, D. P. Bhatt, and N. S. Yadav, “ImmuneGAN: Bio-inspired artificial immune system to secure IoT ecosystem,” in Proc. Int. Conf. Cyber Security, Privacy and Networking (ICSPN 2022), N. Nedjah, G. M. Pérez, and B. B. Gupta, Eds., Lecture Notes in Networks and Systems, vol. 599. Cham, Switzerland: Springer, pp. 151–168, Feb. 2023, doi: 10.1007/978-3-031-22018-0_11.
[68] V. Soni, D. P. Bhatt, N. S. Yadav, and S. Saxena, “DAIS: deep artificial immune system for intrusion detection in IoT ecosystems,” Int. J. Bio-Inspired Comput., vol. 23, no. 3, pp. 148–156, Apr. 2024, doi: 10.1504/IJBIC.2024.137904.
[69] N. Chandnani and C. N. Khairnar, “Bio-Inspired Multilevel Security Protocol for Data Aggregation and Routing in IoT WSNs,” Mobile Networks and Applications, vol. 27, pp. 1030–1049, Jun. 2022, doi: 10.1007/s11036-021-01859-6.
[70] C. Ganguli, S. K. Shandilya, and I. Izonin, “Design and implementation of adaptive network stabilization based on artificial bees colony optimization for nature-inspired cyber security,” J. King Saud Univ. – Science, vol. 35, Art. 102713, 2023, doi: 10.1016/j.jksus.2023.102713.
[71] M. D. Moizuddin and M. Victor Jose, “A bio-inspired hybrid deep learning model for network intrusion detection,” Knowledge-Based Systems, vol. 238, Art. 107894, Feb. 2022, doi: 10.1016/j.knosys.2021.107894.
[72] Y. Harbi, A. Refoufi, Z. Aliouat, and S. Harous, “Improved bio-inspired security scheme for privacy-preserving in the Internet of Things,” Peer-to-Peer Networking and Applications, vol. 15, pp. 2488–2502, Nov. 2022, doi: 10.1007/s12083-022-01372-x.
[73] M. Y. Rahamathulla and M. Ramaiah, “An intrusion attack classification using bio-inspired optimization technique and ensemble learning model for edge computing environments,” Multimedia Tools and Applications, Oct. 2024, doi: 10.1007/s11042-024-20314-8.
[74] M. Bakro et al., "Building a Cloud-IDS by Hybrid Bio- Inspired Feature Selection Algorithms Along With Random Forest Model," IEEE Access, vol. 12, pp. 8846-8874, 2024, doi: 10.1109/ACCESS.2024.3353055.
[75] J. Zhang, H. Wang and X. Wang, “Application of Artificial Bee Colony Algorithm Based on Homogenization Mapping and Collaborative Acquisition Control in Network Communication Security,” PLOS ONE, vol. 19, no. 7, Art. e0306699, Jul. 2024, doi: 10.1371/journal.pone.0306699.
[76] C. Kumar and M. S. A. Ansari, “An explainable nature nspired cyber-attack detection system in Software-Defined IoT applications,” Expert Systems with Applications, vol. 250, Art. 123853, 2024, doi: 10.1016/j.eswa.2024.123853.
[77] S. M. Sonavane, G. R. Prashantha, P. D. Nikam, M. A. V. R., J. Chauhan, S. Sountharrajan, and D. P. Bavirisetti, “Optimizing QoS and security in agriculture IoT deployments: A bio-inspired Q-learning model with customized shards,” Heliyon, vol. 10, no. 2, Art. e24224, Jan. 2024, doi: 10.1016/j.heliyon.2024.e24224.
[78] A. Shorov and I. Kotenko, “The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks,” The Scientific World Journal, vol. 2014, Art. 172583, Aug. 2014, doi: 10.1155/2014/172583.
[79] G. I. Arcas, T. Cioara and I. Anghel, “Whale Optimization for Cloud–Edge-Offloading Decision-Making for Smart Grid Services,” Biomimetics, vol. 9, no. 5, Art. 302, May 2024, doi: 10.3390/biomimetics9050302.
[80] K. J. Rajashekar, P. C. Gowda and A. B. Jayachandra, “SCEHO-IPSO: A Nature-Inspired Meta-Heuristic Optimization for Task-Scheduling Policy in Cloud Computing,” Applied Sciences, vol. 13, no. 19, Art. 10850, 2023, doi: 10.3390/app131910850.
[81] C. E. Garcia, M. R. Camana and I. Koo, “Particle Swarm Optimization-Based Secure Computation Efficiency Maximization in a Power Beacon-Assisted Wireless-Powered Mobile Edge Computing NOMA System,” Energies, vol. 13, no. 21, Art. 5540, 2020, doi: 10.3390/en13215540.
[82] M. Taghizadeh and M. Ahmadi, “Grey Wolf-Based Task Scheduling in Vehicular Fog Computing Systems,” arXiv preprint arXiv:2412.11230, Dec. 2024, doi: 10.48550/arXiv.2412.11230.
[83] S. Liu, J. Du, Y. Zheng, J. Yin, Y. Deng, J. Wu, “A Holistic Optimization Framework for Energy Efficient UAV-Assisted Fog Computing: Attitude Control, Trajectory Planning and Task Assignment,” arXiv preprint arXiv:2407.14894, Jul. 2024, doi: 10.48550/arXiv.2407.14894.
[84] Z. Liu, Z. Liu, L. Wang and X. Jin, “The Satellite Network Cache Placement Strategy Based on Content Popularity and Node Collaboration,” PLOS ONE, vol. 19, no. 8, Art. e0307280, Aug. 2024, doi: 10.1371/journal.pone.0307280.
[85] S. Sawamura, H. Obata, C. Takano and K. Ishida, "A Transmission Rate Variation Model Considering Transmission Power Based on Advection-Diffusion Equation for Multi- Rate Wireless LANs," 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2022, pp. 800-801, doi: 10.1109/GCCE56475.2022.10014403.
[86] K. Marszałek and A. Doma´nski, “A Fluid Flow Model for the Software-Defined Wide Area Networks Analysis,” Scientific Reports, vol. 15, Art. no. 3713, Jan. 2025, doi: 10.1038/s41598-025-88162-6.
[87] Z. Sun and J. Baillieul, “Structure and Control of Biology-Inspired Networks,” arXiv, 2410.06990, Oct. 2024, doi: 10.48550/arXiv.2410.06990.
[88] C. Takano, M. Aida, M. Murata, and M. Imase, “Proposal for Autonomous Decentralized Structure Formation Based on Local Interaction and Back-Diffusion Potential,” IEICE Trans. Commun., vol. E95-B, no. 5, pp. 1529–1538, May 2012.
[89] K. Takagi, C. Takano, M. Aida, and M. Naruse, “New autonomous decentralized structure formation based on Huygens’ principle and renormalization for mobile ad hoc networks,” Int. J. Adv. Intell. Syst., vol. 7, nos. 1–2, pp. 64–73, Jul. 2014.
[90] R. R. Sahoo, A. R. Sardar, M. Singh, S. B. Ray, and S. K. Sarkar, “A bio-inspired and trust-based approach for clustering in WSN,” Natural Computing, vol. 15, pp. 423–434, Sept. 2016, doi: 10.1007/s11047-015-9491-8.
[91] S. Yerrathi and V. Pakala, “Enhancing network stability in VANETs using nature-inspired algorithm for intelligent transportation system,” PLOS ONE, vol. 19, no. 1, Art. e0296331, Jan. 2024, doi: 10.1371/journal.pone.0296331.
[92] P. Modey, G. Abdul-Salaam, E. Freeman, P. Acheampong, W. L. Brown-Acquaye, I. E. Agbehadji and R. C. Millham, “K-Means Based Bee Colony Optimization for Clustering in Heterogeneous Sensor Network,” Sensors, vol. 24, no. 23, Art. 7603, 2024, doi: 10.3390/s24237603.
[93] X. Xiao, H. Huang, and W. Wang, “Underwater Wireless Sensor Networks: An Energy-Efficient Clustering Routing Protocol Based on Data Fusion and Genetic Algorithms,” Applied Sciences, vol. 11, no. 1, Art. 312, Jan. 2021, doi: 10.3390/app11010312.
[94] P. Kaur, K. Kaur, K. Singh, K. Saleem, A. U. Rehman, R. Gupta et al., “Energy-Efficient Artificial Fish Swarm-Based Clustering Protocol for Enhancing Network Lifetime in Underwater Wireless Sensor Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2024, Art. 92, Dec. 2024, doi: 10.1186/s13638-024-02422-z.
[95] S. Sun, Y. Chen and L. Dong, “An Optimization Method for Wireless Sensor Networks Coverage Based on Genetic Algorithm and Reinforced Whale Optimization Algorithm,” Mathematical Biosciences and Engineering, vol. 21, no. 2, pp. 2787-2812, Jan. 2024, doi: 10.3934/mbe.2024124.
[96] K. V. N. A. Bhargavi, G. P. S. Varma, I. Hemalatha and R. Dilli, “An Enhanced Particle Swarm Optimization-Based Node Deployment and Coverage in Sensor Networks,” Sensors, vol. 24, no. 19, Art. 6238, 2024, doi: 10.3390/s24196238.
[97] G. Wang and X. Li, “Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm,” Sensors, vol. 25, no. 1, Art. 69, 2025, doi: 10.3390/s25010069.
[98] S. Mirjalili, K. Siddique, M. Hosseinzadeh, A.M. Rahmani and R.A. Naqvi, “An Area Coverage Scheme Based on Fuzzy Logic and Shuffled Frog-Leaping Algorithm in Heterogeneous Wireless Sensor Networks,” Mathematics, vol. 9, no. 18, Art. 2251, Sept. 2021, doi: 10.3390/math9182251.
[99] S. Singh, S. Nikolovski and P. Chakrabarti, “GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment,” Sensors, vol. 22, no. 19, Art. 7113, Sept. 2022, doi: 10.3390/s22197113. “BeeCup: A bio-inspired energy-efficient clustering protocol for mobile learning,” arXiv, 2008.05852, Aug. 2020, doi: 10.48550/arXiv.2008.05852.
[100] F. Xia, X. Zhao, J. Zhang, J. Ma, and X. Kong, “BeeCup: A bio-inspired energy-efficient clustering protocol for mobile learning,” arXiv, 2008.05852, Aug. 2020, doi: 10.48550/arXiv.2008.05852.
[101] U. Draz, T. Ali, A. K. Bashir, Y. Iano, F. Hashim, A. Almufareh, N. James, and M. H. Miraz, “A Novel Cross-Layer Optimized AI-Enabled Routing Protocol for Underwater Wireless Sensor Networks,” Mathematics, vol. 12, no. 22, Art. 3447, Nov. 2024, doi: 10.3390/math12223447.
[102] S. Sharmin, I. Ahmedy and R. Md Noor, “An Energy-Efficient Data Aggregation Clustering Algorithm for Wireless Sensor Networks Using Hybrid PSO,” Energies, vol. 16, no. 5, Art. 2487, Mar. 2023, doi: 10.3390/en16052487.
[103] A. Bijalwan, I. Hussain, K. C. Purohit and M. A. Kumar, “Enhanced Ant Colony Optimization for Vehicular Ad Hoc Networks Using Fittest Node Clustering,” Sustainability, vol. 15, no. 22, Art. 15903, 2023, doi: 10.3390/su152215903.
[104] A. Tandon, P. Kumar, V. Rishiwal, M. Yadav, and P. Yadav, “A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT,” KSII Transactions on Internet and Information Systems, vol. 15, no. 4, pp. 1317–1341, Apr. 2021, doi: 10.3837/tiis.2021.04.008.
[105] A. Aabdaoui and N. Idrissi, “Energy Minimization in Wireless Sensor Networks Based Bio-Inspired Algorithms,” in Artificial Intelligence and Green Computing (ICAIGC 2023), N. Idrissi et al., Eds., Lecture Notes in Networks and Systems, vol. 806. Cham, Switzerland: Springer, 2023, pp. 171–190, doi: 10.1007/978-3-031-46584-0_14.
[106] X. Xue, R. Shanmugam, S. Palanisamy, O. I. Khalaf, D. Selvaraj, and G. M. Abdulsahib, “A Hybrid Cross-Layer with Harris-Hawk-Optimization-Based Efficient Routing for Wireless Sensor Networks,” Symmetry, vol. 15, no. 2, Art. 438, 2023, doi: 10.3390/sym15020438.
[107] V. R. Patil, A. Kanavalli, S. Chaudhari, and K. S. Aisiri, “Bio-Inspired Based Optimization of Machine Learning Techniques for Energy-Efficient Routing for UWSN,” SN Computer Science, vol. 5, Art. 983, Oct. 2024, doi: 10.1007/s42979-024-03359-2.
[108] M. Saraswathi and E. Logashanmugam, “Chicken Swarm Optimization Modelling for Cognitive Radio Networks Using Deep Belief-Network-Enabled Spectrum Sensing Technique,” PLOS ONE, vol. 19, no. 8, Art. e0305987, Aug. 2024, doi:10.1371/journal.pone.0305987.
[109] R. D. Joshi and S. Banu, “Bio-inspired wireless sensor networks – a protocol for an enhanced hybrid energy optimization routing,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 35, no. 3, pp. 1808–1816, Sept. 2024, doi: 10.11591/ijeecs.v35.i3.pp1808-1816.
[110] G. Natesan, S. Konda, R. P. de Prado, and M. Wozniak, “A Hybrid Mayfly-Aquila Optimization Algorithm Based Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks,” Sensors, vol. 22, no. 17, Art. 6405, 2022, doi: 10.3390/s22176405.
[111] C. Zeng, T. Qin, W. Tan, C. Lin, Z. Zhu, J. Yang, and S. Yuan, “Coverage Optimization of Heterogeneous Wireless Sensor Network Based on Improved Wild Horse Optimizer,” Biomimetics, vol. 8, no. 1, Art. 70, 2023, doi: 10.3390/biomimetics8010070
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ryo Hamamoto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
