Migration of Microservices Execution Contexts Between Processing Zones in Software-Defined Vehicular Fog Networks

Authors

DOI:

https://doi.org/10.4108/eetiot.9987

Keywords:

Vehicular Fog Networks , Software-Defined Vehicular Fog Networks, Task Allocation, Mobility-Responsive Microservice Orchestration

Abstract

The growing need for time-sensitive applications in vehicular networks makes Fog Computing a promising model to orchestrate cloud-based services consumed by vehicle nodes, as it brings computational resources and decision-making processes near to vehicles. However, vehicular mobility presents significant challenges for implementing Fog Computing Services that require low latency. The dynamic nature of vehicle movement means that the physical location of computational resources (Fog Nodes) relative to vehicles is constantly changing. Consequently, maintaining a consistent and reliable low-latency communication path becomes challenging. Recent research suggests that the Software-Defined Networking paradigm can optimize Vehicular Fog Computing Networks in resource and service management. In this paper, a dynamic methodology is proposed for the migration of the microservice execution context between processing zones in Software-Defined Vehicular Fog Computing Networks (SDVFN). This approach was tested using a simulated use case in our SDVFN Simulation Framework, designed to support research on dynamic microservice orchestration in SDVFN, taking into account vehicular mobility.

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

References

[1] Yuan, T., Da Rocha Neto, W., Rothenberg, C.E., Obraczka, K., Barakat, C. and Turletti, T. (2022) Machine learning for next-generation intelligent transportation systems: A survey. Transactions on Emerging Telecommunications Technologies 33(4): 1–35. doi:10.1002/ett.4427.

[2] Darwish, T.S. and Abu Bakar, K. (2018) Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues. IEEE Access 6: 15679– 15701. doi:10.1109/ACCESS.2018.2815989.

[3] Sharma, S. and Kaushik, B. (2019) A survey on internet of vehicles: Applications, security issues & solutions. Vehicular Communications 20:100182. doi:10.1016/j.vehcom.2019.100182, URL https://linkinghub.elsevier.com/retrieve/pii/S2214209619302293.

[4] Langley, D.J., van Doorn, J., Ng, I.C., Stieglitz, S., Lazovik, A. and Boonstra, A. (2021) The Internet of Everything: Smart things and their impact on business models. Journal of Business Research 122 (January 2020): 853–863. doi:10.1016/j.jbusres.2019.12.035, URL https://doi.org/10.1016/j.jbusres.2019.12.035.

[5] Farias da Costa, V.C., Oliveira, L. and de Souza, J. (2021) Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. Sensors 21(2): 568. doi:10.3390/s21020568, URL https://www.mdpi.com/1424-8220/21/2/568.

[6] Ji, B., Zhang, X., Mumtaz, S., Han, C., Li, C., Wen, H. and Wang, D. (2020) Survey on the Internet of Vehicles: Network Architectures and Applications. IEEE Communications Standards Magazine 4(1): 34–41. doi:10.1109/MCOMSTD.001.1900053, URL https:// ieeexplore.ieee.org/document/9088328/.

[7] Truong, N.B., Lee, G.M. and Ghamri-Doudane, Y. (2015) Software defined networking-based vehicular Adhoc Network with Fog Computing. Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management, IM 2015 : 1202–1207doi:10.1109/INM.2015.7140467.

[8] Liu, K., Xu, X., Chen, M., Liu, B., Wu, L. and Lee, V.C. (2019) A Hierarchical architecture for the future internet of vehicles. IEEE Communications Magazine 57(7): 41–47. doi:10.1109/MCOM.2019.1800772.

[9] Bhatia, J., Modi, Y., Tanwar, S. and Bhavsar, M. (2019) Software defined vehicular networks: A comprehensive review. International Journal of Communication Systems 32(12): e4005. doi:10.1002/dac.4005, URL http://doi. wiley.com/10.1002/dac.4005.

[10] Ku, I., Lu, Y., Gerla, M., Gomes, R.L., Ongaro, F. and Cerqueira, E. (2014) Towards software-defined VANET: Architecture and services. In 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET) (IEEE): 103–110. doi:10.1109/MedHocNet.2014.6849111, URL http://ieeexplore.ieee.org/document/6849111/.

[11] Weber, J.S., Neves, M. and Ferreto, T. (2021) VANET simulators: an updated review. Journal of the Brazilian Computer Society 27(1): 8. doi:10.1186/s13173-021- 00113-x, URL https://journal bcs.springeropen.com/articles/10.1186/s13173-021-00113-x.

[12] Costa, B., Bachiega, J., Rebouças, L., Carvalho, D.E., Araujo, A.P.F. and Rebouças De Carvalho, L. (2022) Orchestration in Fog Computing: A Comprehensive Survey. ACM Comput. Surv 55. doi:10.1145/3486221, URL https://doi.org/10.1145/3486221.

[13] Sarkohaki, F. and Sharifi, M. (2024) Service placement in fog–cloud computing environments: a comprehensive literature review. The Journal of Supercomputing 80(12): 17790–17822. doi:10.1007/s11227-024-06151-4, URL https://link.springer.com/10.1007/s11227-024-06151-4.

[14] Pallewatta, S., Kostakos, V. and Buyya, R. (2023) Placement of Microservices-based IoT Applications in Fog Computing: A Taxonomy and Future Directions. ACM Computing Surveys 55(14s): 1–43. doi:10.1145/3592598.

[15] Schrab, K., Neubauer, M., Protzmann, R., Radusch, I., Manganiaris, S., Lytrivis, P. and Amditis, A.J. (2023) Modeling an ITS Management Solution for Mixed Highway Traffic With Eclipse MOSAIC. IEEE Transactions on Intelligent Transportation Systems 24(6): 6575–6585. doi:10.1109/TITS.2022.3204174.

[16] EclipseMosaicWebsite (2024), Eclipse Mosaic: AMulti-Domain and Multi-Scale Simulation Framework for Connected and Automated Mobility. URL https://eclipse.dev/mosaic/.

[17] Lopez, P.A., Wiessner, E., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y.P., Hilbrich, R. et al. (2018) Microscopic Traffic Simulation using SUMO. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (IEEE): 2575–2582. doi:10.1109/ITSC.2018.8569938, URL https://ieeexplore.ieee.org/document/8569938/.

[18] Alvarenga, L.D.C., Sousa, P. and Costa, A. (2024) Seamless Handovers in Software-Defined Vehicular Fog Networks. In 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS) (IEEE): 1–8. doi:10.1109/ISAS64331.2024.10845537.

[19] Alvarenga, L.D.C., Sousa, P. and Costa, A. (2025) IoV Simulation Architecture for Software-Defined Vehicular Fog Network Orchestration. 40–54. doi:10.1007/978-3-031-84426-3_4, URL https://link.springer.com/10.1007/978-3-031-84426-3_4.

Downloads

Published

19-08-2025

How to Cite

[1]
L. D. Alvarenga, P. Sousa, and A. Costa, “Migration of Microservices Execution Contexts Between Processing Zones in Software-Defined Vehicular Fog Networks”, EAI Endorsed Trans IoT, vol. 11, Aug. 2025.

Funding data