RETRACTED ARTICLE Mapping Generative Artificial Intelligence (GAI's) Exciting Future: From Gemini to Q* and Beyond
DOI:
https://doi.org/10.4108/airo.5962Keywords:
Artificial Intelligence (AI), Bard, ChatGPT, Computer Vision, Deep Learning, Gemini, Generative AI (GAI), Large Language Models (LLMs), Machine Intelligence, Machine Learning, Mixture of Experts (MoE), Multimodality, Q* (Q-star)Abstract
RETRACTED: This article has been retracted at the request of our research integrity team. The retraction notice can be found here https://doi.org/10.4108/airo.7168
Downloads
References
[1] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, p. 433, 1950.
[2] D. McDermott, “Artificial intelligence meets natural stupidity,” Acm Sigart Bulletin, no. 57, pp. 4–9, 1976.
[3] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49, no. 1, pp. 8–30, 1961.
[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
[5] M. Minsky and S. Papert, “An introduction to computational geometry,” Cambridge tiass., HIT, vol. 479, no. 480, p. 104, 1969.
[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.
[7] G.-G. Lee, L. Shi, E. Latif, Y. Gao, A. Bewersdorf, M. Nyaaba, S. Guo, Z. Wu, Z. Liu, H. Wang et al., “Multimodality of ai for education: Towards artificial general intelligence,” arXiv preprint arXiv:2312.06037, 2023.
[8] P. Maddigan and T. Susnjak, “Chat2vis: Generating data visualisations via natural language using chatgpt, codex and gpt-3 large language models,” IEEE Access, 2023.
[9] T. R. McIntosh, T. Liu, T. Susnjak, P. Watters, A. Ng, and M. N. Halgamuge, “A culturally sensitive test to evaluate nuanced gpt hallucination,” IEEE Transactions on Artificial Intelligence, vol. 1, no. 01, pp. 1–13, 2023.
[10] M. R. Morris, J. Sohl-dickstein, N. Fiedel, T. Warkentin, A. Dafoe, A. Faust, C. Farabet, and S. Legg, “Levels of agi: Operationalizing progress on the path to agi,” arXiv preprint arXiv:2311.02462, 2023.
[11] J. Schuett, N. Dreksler, M. Anderljung, D. McCaffary, L. Heim, E. Bluemke, and B. Garfinkel, “Towards best practices in agi safety and governance: A survey of expert opinion,” arXiv preprint arXiv:2305.07153, 2023.
[12] X. Shuai, J. Rollins, I. Moulinier, T. Custis, M. Edmunds, and F. Schilder, “A multidimensional investigation of the effects of publication retraction on scholarly impact,” Journal of the Association for Information Science and Technology, vol. 68, no. 9, pp. 2225–2236, 2017.
[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
[14] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
[15] C. Huang, Z. Zhang, B. Mao, and X. Yao, “An overview of artificial intelligence ethics,” IEEE Transactions on Artificial Intelligence, 2022.
[16] L. Besançon, N. Peiffer-Smadja, C. Segalas, H. Jiang, P. Masuzzo, C. Smout, E. Billy, M. Deforet, and C. Leyrat, “Open science saves lives: lessons from the covid-19 pandemic,” BMC Medical Research Methodology, vol. 21, no. 1, pp. 1–18, 2021.
[17] C. R. Triggle, R. MacDonald, D. J. Triggle, and D. Grierson, “Requiem for impact factors and high publication charges,” Accountability in Research, vol. 29, no. 3, pp. 133–164, 2022.
[18] T. McIntosh, A. Kayes, Y.-P. P. Chen, A. Ng, and P. Watters, “Ransomware mitigation in the modern era: A comprehensive review, research challenges, and future directions,” ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–36, 2021.
[19] T. McIntosh, T. Liu, T. Susnjak, H. Alavizadeh, A. Ng, R. Nowrozy, and P. Watters, “Harnessing gpt-4 for generation of cybersecurity grc policies: A focus on ransomware attack mitigation,” Computers & Security, vol. 134, p. 103424, 2023.
[20] H. Bao, W. Wang, L. Dong, Q. Liu, O. K. Mohammed, K. Aggarwal, S. Som, S. Piao, and F. Wei, “Vlmo: Unified vision-language pre-training with mixture-of-modality-experts,” Advances in Neural Information Processing Systems, vol. 35, pp. 32 897–32 912, 2022.
[21] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat et al., “Glam: Efficient scaling of language models with mixture-of-experts,” in International Conference on Machine Learning. PMLR, 2022, pp. 5547–5569.
[22] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: a literature survey,” Artificial Intelligence Review, vol. 42, pp. 275–293, 2014.
[23] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. Susano Pinto, D. Keysers, and N. Houlsby, “Scaling vision with sparse mixture of experts,” Advances in Neural Information Processing Systems, vol. 34, pp. 8583–8595, 2021.
[24] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE transactions on neural networks and learning systems, vol. 23, no. 8, pp. 1177–1193, 2012.
[25] L. Zhang, S. Huang, W. Liu, and D. Tao, “Learning a mixture of granularity-specific experts for fine-grained categorization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8331–8340.
[26] D. Martin, S. Malpica, D. Gutierrez, B. Masia, and A. Serrano, “Multimodality in vr: A survey,” ACM Computing Surveys (CSUR), vol. 54, no. 10s, pp. 1–36, 2022.
[27] Q. Sun, Q. Yu, Y. Cui, F. Zhang, X. Zhang, Y. Wang, H. Gao, J. Liu, T. Huang, and X. Wang, “Generative pretraining in multimodality,” arXiv preprint arXiv:2307.05222, 2023.
[28] L. Wei, L. Xie, W. Zhou, H. Li, and Q. Tian, “Mvp: Multimodality-guided visual pre-training,” in European Conference on Computer Vision. Springer, 2022, pp. 337–353.
[29] J. Wu, W. Zhou, X. Qian, J. Lei, L. Yu, and T. Luo, “Menet: Lightweight multimodality enhancement network for detecting salient objects in rgb-thermal images,” Neurocomputing, vol. 527, pp. 119–129, 2023.
[30] Q. Ye, H. Xu, G. Xu, J. Ye, M. Yan, Y. Zhou, J. Wang, A. Hu, P. Shi, Y. Shi et al., “mplug-owl: Modularization empowers large language models with multimodality,” arXiv preprint arXiv:2304.14178, 2023.
[31] K. LaGrandeur, “How safe is our reliance on ai, and should we regulate it?” AI and Ethics, vol. 1, pp. 93–99, 2021.
[32] S. McLean, G. J. Read, J. Thompson, C. Baber, N. A. Stanton, and P. M. Salmon, “The risks associated with artificial general intelligence: A systematic review,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 35, no. 5, pp. 649–663, 2023.
[33] Y. K. Dwivedi, L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick, Y. Duan, R. Dwivedi, J. Edwards, A. Eirug, V. Galanos, P. V. Ilavarasan, M. Janssen, P. Jones, A. K. Kar, H. Kizgin, B. Kronemann, B. Lal, B. Lucini, R. Medaglia, K. Le Meunier-FitzHugh, L. C. Le Meunier-FitzHugh, S. Misra, E. Mogaji, S. K. Sharma, J. B. Singh, V. Raghavan, R. Raman, N. P. Rana, S. Samothrakis, J. Spencer, K. Tamilmani, A. Tubadji, P. Walton, and M. D. Williams, “Artificial intelligence (ai): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” International Journal of Information Management, vol. 57, p. 101994, 2021.
[34] I. Gabriel, “Artificial intelligence, values, and alignment,” Minds and Machines, vol. 30, pp. 411–437, 2020.
[35] A. Shaban-Nejad, M. Michalowski, S. Bianco, J. S. Brownstein, D. L. Buckeridge, and R. L. Davis, “Applied artificial intelligence in healthcare: Listening to the winds of change in a post-covid-19 world,” pp. 1969–1971, 2022.
[36] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.
[37] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz, E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language processing via large pre-trained language models: A survey,” ACM Computing Surveys, vol. 56, no. 2, pp. 1–40, 2023.
[38] J. Li, X. Cheng, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Halueval: A large-scale hallucination evaluation benchmark for large language models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023, pp. 6449–6464.
[39] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh et al., “Ethical and social risks of harm from language models,” arXiv preprint arXiv:2112.04359, 2021.
[40] X. Zhiheng, Z. Rui, and G. Tao, “Safety and ethical concerns of large language models,” in Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 4: Tutorial Abstracts), 2023, pp. 9–16.
[41] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and R. L. Mercer, “Class-based n-gram models of natural language,” Computational linguistics, vol. 18, no. 4, pp. 467–480, 1992.
[42] S. Katz, “Estimation of probabilities from sparse data for the language model component of a speech recognizer,” IEEE transactions on acoustics, speech, and signal processing, vol. 35, no. 3, pp. 400–401, 1987.
[43] R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling,” in 1995 international conference on acoustics, speech, and signal processing, vol. 1. IEEE, 1995, pp. 181–184.
[44] R. Kuhn and R. De Mori, “A cache-based natural language model for speech recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 12, no. 6, pp. 570–583, 1990.
[45] H. Ney, U. Essen, and R. Kneser, “On structuring probabilistic dependences in stochastic language modelling,” Computer Speech & Language, vol. 8, no. 1, pp. 1–38, 1994.
[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[47] M. K. Nammous and K. Saeed, “Natural language processing: speaker, language, and gender identification with lstm,” Advanced Computing and Systems for Security: Volume Eight, pp. 143–156, 2019.
[48] D. Wei, B. Wang, G. Lin, D. Liu, Z. Dong, H. Liu, and Y. Liu, “Research on unstructured text data mining and fault classification based on rnn-lstm with malfunction inspection report,” Energies, vol. 10, no. 3, p. 406, 2017.
[49] L. Yao and Y. Guan, “An improved lstm structure for natural language processing,” in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI). IEEE, 2018, pp. 565–569.
[50] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
[51] T. Susnjak, “Beyond predictive learning analytics modelling and onto explainable artificial intelligence with prescriptive analytics and chatgpt,” International Journal of Artificial Intelligence in Education, pp. 1–31, 2023.
[52] T. Susnjak, E. Griffin, M. McCutcheon, and K. Potter, “Towards clinical prediction with transparency: An explainable ai approach to survival modelling in residential aged care,” arXiv preprint arXiv:2312.00271, 2023.
[53] R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting, and N. Liu, “Large language models in health care: Development, applications, and challenges,” Health Care Science, vol. 2, no. 4, pp. 255–263, 2023.
[54] D. Baidoo-Anu and L. O. Ansah, “Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning,” Journal of AI, vol. 7, no. 1, pp. 52–62, 2023.
[55] T. Susnjak, “Chatgpt: The end of online exam integrity?” arXiv preprint arXiv:2212.09292, 2022.
[56] A. Tlili, B. Shehata, M. A. Adarkwah, A. Bozkurt, D. T. Hickey, R. Huang, and B. Agyemang, “What if the devil is my guardian angel: Chatgpt as a case study of using chatbots in education,” Smart Learning Environments, vol. 10, no. 1, p. 15, 2023.
[57] M. A. AlAfnan, S. Dishari, M. Jovic, and K. Lomidze, “Chatgpt as an educational tool: Opportunities, challenges, and recommendations for communication, business writing, and composition courses,” Journal of Artificial Intelligence and Technology, vol. 3, no. 2, pp. 60–68, 2023.
[58] A. S. George and A. H. George, “A review of chatgpt ai’s impact on several business sectors,” Partners Universal International Innovation Journal, vol. 1, no. 1, pp. 9–23, 2023.
[59] G. K. Hadfield and J. Clark, “Regulatory markets: The future of ai governance,” arXiv preprint arXiv:2304.04914, 2023.
[60] M. Bakker, M. Chadwick, H. Sheahan, M. Tessler, L. Campbell-Gillingham, J. Balaguer, N. McAleese, A. Glaese, J. Aslanides, M. Botvinick et al., “Fine-tuning language models to find agreement among humans with diverse preferences,” Advances in Neural Information Processing Systems, vol. 35, pp. 38 176–38 189, 2022.
[61] Z. Hu, Y. Lan, L. Wang, W. Xu, E.-P. Lim, R. K.-W. Lee, L. Bing, and S. Poria, “Llm-adapters: An adapter family for parameter-efficient fine-tuning of large language models,” arXiv preprint arXiv:2304.01933, 2023.
[62] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel, “Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 1950–1965, 2022.
[63] H. Zheng, L. Shen, A. Tang, Y. Luo, H. Hu, B. Du, and D. Tao, “Learn from model beyond fine-tuning: A survey,” arXiv preprint arXiv:2310.08184, 2023.
[64] P. Manakul, A. Liusie, and M. J. Gales, “Selfcheckgpt: Zero-resource black-box hallucination detection for generative large language models,” arXiv preprint arXiv:2303.08896, 2023.
[65] A. Martino, M. Iannelli, and C. Truong, “Knowledge injection to counter large language model (llm) hallucination,” in European Semantic Web Conference. Springer, 2023, pp. 182–185.
[66] J.-Y. Yao, K.-P. Ning, Z.-H. Liu, M.-N. Ning, and L. Yuan, “Llm lies: Hallucinations are not bugs, but features as adversarial examples,” arXiv preprint arXiv:2310.01469, 2023.
[67] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen et al., “Siren’s song in the ai ocean: A survey on hallucination in large language models,” arXiv preprint arXiv:2309.01219, 2023.
[68] J. Ji, M. Liu, J. Dai, X. Pan, C. Zhang, C. Bian, R. Sun, Y. Wang, and Y. Yang, “Beavertails: Towards improved safety alignment of llm via a human-preference dataset,” arXiv preprint arXiv:2307.04657, 2023.
[69] Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. G. H. Cheng, Y. Klochkov, M. F. Taufiq, and H. Li, “Trustworthy llms: a survey and guideline for evaluating large language models’ alignment,” arXiv preprint arXiv:2308.05374, 2023.
[70] Y. Wang, W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang, X. Jiang, and Q. Liu, “Aligning large language models with human: A survey,” arXiv preprint arXiv:2307.12966, 2023.
[71] Z. Sun, Y. Shen, Q. Zhou, H. Zhang, Z. Chen, D. Cox, Y. Yang, and C. Gan, “Principle-driven self-alignment of language models from scratch with minimal human supervision,” arXiv preprint arXiv:2305.03047, 2023.
[72] Y. Wolf, N. Wies, Y. Levine, and A. Shashua, “Fundamental limitations of alignment in large language models,” arXiv preprint arXiv:2304.11082, 2023.
[73] H. Dang, L. Mecke, F. Lehmann, S. Goller, and D. Buschek, “How to prompt? opportunities and challenges of zero-and few-shot learning for human-ai interaction in creative applications of generative models,” arXiv preprint arXiv:2209.01390, 2022.
[74] R. Ma, X. Zhou, T. Gui, Y. Tan, L. Li, Q. Zhang, and X. Huang, “Template-free prompt tuning for few-shot ner,” arXiv preprint arXiv:2109.13532, 2021.
[75] C. Qin and S. Joty, “Lfpt5: A unified framework for lifelong few-shot language learning based on prompt tuning of t5,” arXiv preprint arXiv:2110.07298, 2021.
[76] S. Wang, L. Tang, A. Majety, J. F. Rousseau, G. Shih, Y. Ding, and Y. Peng, “Trustworthy assertion classification through prompting,” Journal of biomedical informatics, vol. 132, p. 104139, 2022.
[77] Y. Fan, F. Jiang, P. Li, and H. Li, “Grammargpt: Exploring open-source llms for native chinese grammatical error correction with supervised fine-tuning,” in CCF International Conference on Natural Language Processing and Chinese Computing. Springer, 2023, pp. 69–80.
[78] D. Liga and L. Robaldo, “Fine-tuning gpt-3 for legal rule classification,” Computer Law & Security Review, vol. 51, p. 105864, 2023.
[79] Y. Liu, A. Singh, C. D. Freeman, J. D. Co-Reyes, and P. J. Liu, “Improving large language model fine-tuning for solving math problems,” arXiv preprint arXiv:2310.10047, 2023.
[80] Z. Talat, A. Névéol, S. Biderman, M. Clinciu, M. Dey, S. Longpre, S. Luccioni, M. Masoud, M. Mitchell, D. Radev et al., “You reap what you sow: On the challenges of bias evaluation under multilingual settings,” in Proceedings of BigScience Episode# 5–Workshop on Challenges & Perspectives in Creating Large Language Models, 2022, pp. 26–41.
[81] Y. Liu, S. Yu, and T. Lin, “Hessian regularization of deep neural networks: A novel approach based on stochastic estimators of hessian trace,” Neurocomputing, vol. 536, pp. 13–20, 2023.
[82] Y. Lu, Y. Bo, and W. He, “Confidence adaptive regularization for deep learning with noisy labels,” arXiv preprint arXiv:2108.08212, 2021.
[83] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton, “Regularizing neural networks by penalizing confident output distributions,” arXiv preprint arXiv:1701.06548, 2017.
[84] E. Chen, Z.-W. Hong, J. Pajarinen, and P. Agrawal, “Redeeming intrinsic rewards via constrained optimization,” Advances in Neural Information Processing Systems, vol. 35, pp. 4996–5008, 2022.
[85] Y. Jiang, Z. Li, M. Tan, S. Wei, G. Zhang, Z. Guan, and B. Han, “A stable block adjustment method without ground control points using bound constrained optimization,” International Journal of Remote Sensing, vol. 43, no. 12, pp. 4708–4722, 2022.
[86] M. Kachuee and S. Lee, “Constrained policy optimization for controlled self-learning in conversational ai systems,” arXiv preprint arXiv:2209.08429, 2022.
[87] Z. Song, H. Wang, and Y. Jin, “A surrogate-assisted evolutionary framework with regions of interests-based data selection for expensive constrained optimization,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023.
[88] J. Yu, T. Xu, Y. Rong, J. Huang, and R. He, “Structure-aware conditional variational auto-encoder for constrained molecule optimization,” Pattern Recognition, vol. 126, p. 108581, 2022.
[89] P. Butlin, “Ai alignment and human reward,” in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 2021, pp. 437–445.
[90] F. Faal, K. Schmitt, and J. Y. Yu, “Reward modeling for mitigating toxicity in transformer-based language models,” Applied Intelligence, vol. 53, no. 7, pp. 8421–8435, 2023.
[91] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg, “Scalable agent alignment via reward modeling: a research direction,” arXiv preprint arXiv:1811.07871, 2018.
[92] L. Li, Y. Chai, S. Wang, Y. Sun, H. Tian, N. Zhang, and H. Wu, “Tool-augmented reward modeling,” arXiv preprint arXiv:2310.01045, 2023.
[93] F. Barreto, L. Moharkar, M. Shirodkar, V. Sarode, S. Gonsalves, and A. Johns, “Generative artificial intelligence: Opportunities and challenges of large language models,” in International Conference on Intelligent Computing and Networking. Springer, 2023, pp. 545–553.
[94] Z. Chen, Z. Wang, Z. Wang, H. Liu, Z. Yin, S. Liu, L. Sheng, W. Ouyang, Y. Qiao, and J. Shao, “Octavius: Mitigating task interference in mllms via moe,” arXiv preprint arXiv:2311.02684, 2023.
[95] C. Dun, M. D. C. H. Garcia, G. Zheng, A. H. Awadallah, A. Kyrillidis, and R. Sim, “Sweeping heterogeneity with smart mops: Mixture of prompts for llm task adaptation,” arXiv preprint arXiv:2310.02842, 2023.
[96] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Barnes, and A. Mian, “A comprehensive overview of large language models,” arXiv preprint arXiv:2307.06435, 2023.
[97] F. Xue, Y. Fu, W. Zhou, Z. Zheng, and Y. You, “To repeat or not to repeat: Insights from scaling llm under token-crisis,” arXiv preprint arXiv:2305.13230, 2023.
[98] M. Nowaz Rabbani Chowdhury, S. Zhang, M. Wang, S. Liu, and P.-Y. Chen, “Patch-level routing in mixture-of-experts is provably sample-efficient for convolutional neural networks,” arXiv e-prints, pp. arXiv–2306, 2023.
[99] J. Peng, K. Zhou, R. Zhou, T. Hartvigsen, Y. Zhang, Z. Wang, and T. Chen, “Sparse moe as a new treatment: Addressing forgetting, fitting, learning issues in multi-modal multi-task learning,” in Conference on Parsimony and Learning (Recent Spotlight Track), 2023.
[100] C. N. d. Santos, J. Lee-Thorp, I. Noble, C.-C. Chang, and D. Uthus, “Memory augmented language models through mixture of word experts,” arXiv preprint arXiv:2311.10768, 2023.
[101] W. Wang, G. Ma, Y. Li, and B. Du, “Language-routing mixture of experts for multilingual and code-switching speech recognition,” arXiv preprint arXiv:2307.05956, 2023.
[102] X. Zhao, X. Chen, Y. Cheng, and T. Chen, “Sparse moe with language guided routing for multilingual machine translation,” in Conference on Parsimony and Learning (Recent Spotlight Track), 2023.
[103] W. Huang, H. Zhang, P. Peng, and H. Wang, “Multi-gate mixture-of-expert combined with synthetic minority over-sampling technique for multimode imbalanced fault diagnosis,” in 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2023, pp. 456–461.
[104] B. Liu, L. Ding, L. Shen, K. Peng, Y. Cao, D. Cheng, and D. Tao, “Diversifying the mixture-of-experts representation for language models with orthogonal optimizer,” arXiv preprint arXiv:2310.09762, 2023.
[105] W. Wang, Z. Lai, S. Li, W. Liu, K. Ge, Y. Liu, A. Shen, and D. Li, “Prophet: Fine-grained load balancing for parallel training of large-scale moe models,” in 2023 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2023, pp. 82–94.
[106] X. Yao, S. Liang, S. Han, and H. Huang, “Enhancing molecular property prediction via mixture of collaborative experts,” arXiv preprint arXiv:2312.03292, 2023.
[107] Z. Xiao, Y. Jiang, G. Tang, L. Liu, S. Xu, Y. Xiao, and W. Yan, “Adversarial mixture of experts with category hierarchy soft constraint,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021, pp. 2453–2463.
[108] M. Agbese, R. Mohanani, A. Khan, and P. Abrahamsson, “Implementing ai ethics: Making sense of the ethical requirements,” in Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, 2023, pp. 62–71.
[109] Z. Chen, Y. Deng, Y. Wu, Q. Gu, and Y. Li, “Towards understanding the mixture-of-experts layer in deep learning,” Advances in neural information processing systems, vol. 35, pp. 23 049–23 062, 2022.
[110] Y. Zhou, T. Lei, H. Liu, N. Du, Y. Huang, V. Zhao, A. M. Dai, Q. V. Le, J. Laudon et al., “Mixture-of-experts with expert choice routing,” Advances in Neural Information Processing Systems, vol. 35, pp. 7103–7114, 2022.
[111] N. Guha, C. Lawrence, L. A. Gailmard, K. Rodolfa, F. Surani, R. Bommasani, I. Raji, M.-F. Cuéllar, C. Honigsberg, P. Liang et al., “Ai regulation has its own alignment problem: The technical and institutional feasibility of disclosure, registration, licensing, and auditing,” George Washington Law Review, Forthcoming, 2023.
[112] Gemini Team, Google, “Gemini: A family of highly capable multimodal models,” 2023, accessed: 17 December 2023. [Online]. Available: https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf
[113] J. N. Acosta, G. J. Falcone, P. Rajpurkar, and E. J. Topol, “Multimodal biomedical ai,” Nature Medicine, vol. 28, no. 9, pp. 1773–1784, 2022.
[114] S. Qi, Z. Cao, J. Rao, L. Wang, J. Xiao, and X. Wang, “What is the limitation of multimodal llms? a deeper look into multimodal llms through prompt probing,” Information Processing & Management, vol. 60, no. 6, p. 103510, 2023.
[115] B. Xu, D. Kocyigit, R. Grimm, B. P. Griffin, and F. Cheng, “Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review,” Progress in cardiovascular diseases, vol. 63, no. 3, pp. 367–376, 2020. [116] Uddin, N. M. I., Moshayedi, A. J., lan1, H., & Shuxin, Y. (2022). The Face Detection / Recognition , Perspective and Obstacles In Robotic: A Review . EAI Endorsed Transactions on AI and Robotics, 1, e14. https://doi.org/10.4108/airo.v1i1.2836.
[117] Moshayedi, A. J., Khan, A. S., Davari, M., Mokhtari, T., & Emadi Andani, M. (2024). Micro robot as the feature of robotic in healthcare approach from design to application: the State of art and challenges. EAI Endorsed Transactions on AI and Robotics, 3. https://doi.org/10.4108/airo.5602.
[118] Moshayedi, A.J.; Uddin, N.M.I.; Khan, A.S.; Zhu, J.; Emadi Andani, M. Designing and Developing a Vision-Based System to Investigate the Emotional Effects of News on Short Sleep at Noon: An Experimental Case Study. Sensors 2023, 23, 8422. https://doi.org/10.3390/s23208422.
[119] Jahangir Moshayedi, A., Reza, K. S., Sohail Khan, A., & Nawaz, A. (2023). Integrating Virtual Reality and Robotic Operation System (ROS) for AGV Navigation. EAI Endorsed Transactions on AI and Robotics, 2. https://doi.org/10.4108/airo.v2i1.3181.
[120] Xu, G., Sohail Khan, A., Moshayedi, A. J., Zhang, X., & Shuxin, Y. (2022). The Object Detection, Perspective and Obstacles In Robotic: A Review : . EAI Endorsed Transactions on AI and Robotics, 1, e13. https://doi.org/10.4108/airo.v1i1.2709.
[121] Akhtar, Z.B. Unveiling the evolution of generative AI (GAI): a comprehensive and investigative analysis toward LLM models (2021–2024) and beyond. Journal of Electrical Systems and Inf Technol 11, 22 (2024). https://doi.org/10.1186/s43067-024-00145-1.
[122] Bin Akhtar, Z. (2024). From bard to Gemini: An investigative exploration journey through Google’s evolution in conversational AI and generative AI. Computing and Artificial Intelligence, 2(1), 1378. https://doi.org/10.59400/cai.v2i1.1378.
[123] A. J. Moshayedi, A. S. Khan, S. Yang and S. M. Zanjani, "Personal Image Classifier Based Handy Pipe Defect Recognizer (HPD): Design and Test," 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi'an, China, 2022, pp. 1721-1728, doi: 10.1109/ICSP54964.2022.9778676.
[124] A. J. Moshayedi, A. S. Roy, L. Liao, A. S. Khan, A. Kolahdooz and A. Eftekhari, "Design and Development of FOODIEBOT Robot: From Simulation to Design," in IEEE Access, vol. 12, pp. 36148-36172, 2024, doi: 10.1109/ACCESS.2024.3355278.
[125] Z. B. Akhtar and V. Stany Rozario, "The Design Approach of an Artificial Human Brain in Digitized Formulation based on Machine Learning and Neural Mapping," 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 2020, pp. 1-7, doi: 10.1109/INCET49848.2020.9154000. https://ieeexplore.ieee.org/document/9154000.
[126] Akhtar, Z.B.: The design approach of an artificial intelligent (AI) medical system based on electronical health records (EHR) and priority segmentations. J. Eng. 2024, 1–10 (2024). https://doi.org/10.1049/tje2.12381.
[127] Zarif Bin AKHTAR, & Ahmed TAJBIUL RAWOL. (2024). Unlocking the Future for the New Data Paradigm of DNA Data Storage : An Investigative Analysis of Advancements, Challenges, Future Directions. Journal of Information Sciences, 23(1), 23–44. https://doi.org/10.34874/IMIST.PRSM/jis-v23i1.47102.
[128] Bin Akhtar, Z. (2024). Artificial intelligence (AI) within manufacturing: An investigative exploration for opportunities, challenges, future directions. Metaverse, 5(2), 2731. doi:http://dx.doi.org/10.54517/m.v5i2.2731.
[129] Zarif, R., & Akhtar, B. (2024). Exploring Biomedical Engineering (BME): Advances within Accelerated Computing and Regenerative Medicine for a Computational and Medical Science Perspective Exploration Analysis. J Emerg Med OA, 2, 2024. https://www.opastpublishers.com/open-access-articles/exploring-biomedical-engineering-bme-advances-within-accelerated-computing-and-regenerative-medicine-for-a-computational.pdf.
[130] Zarif Bin Akhtar"Unraveling the Promise of Computing DNA Data Storage: An Investigative Analysis of Advancements, Challenges, Future Directions," Journal of Advances in Artificial Intelligence vol. 2, no. 1, pp. 122-137, 2024. https://www.jaai.net/vol2/JAAI-V2N1-22.pdf.
[131] Akhtar, Z. B., & Gupta, A. D. . (2024). Integrative Approaches for Advancing Organoid Engineering: From Mechanobiology to Personalized Therapeutics. Journal of Applied Artificial Intelligence, 5(1), 1–27. https://doi.org/10.48185/jaai.v5i1.974.
[132] Akhtar, Z. B., & Gupta, A. D. (2024). Advancements within Molecular Engineering for Regenerative Medicine and Biomedical Applications an Investigation Analysis towards A Computing Retrospective. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 6(1), 54-72. https://doi.org/10.35882/jeeemi.v6i1.351.
[133] Zarif Bin Akhtar. (2023). Accelerated Computing A Biomedical Engineering and Medical Science Perspective. Annals of the Academy of Romanian Scientists Series on Biological Sciences, 12(2), 138–164. https://doi.org/10.56082/annalsarscibio.2023.2.138.
[134] Akhtar, Z. (2023). Designing an AI Healthcare System: EHR and Priority-Based Medical Segmentation Approach. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 5(1), 50-66. doi:https://doi.org/10.18196/mt.v5i1.19399.
[135] Bin Akhtar, Z. (2022). A Revolutionary Gaming Style in Motion. IntechOpen. doi: 10.5772/intechopen.100551 https://www.intechopen.com/chapters/79340.
[136] Dey, I. (Ed.). (2022). Computer-Mediated Communication. IntechOpen. doi: 10.5772/intechopen.92467 https://www.intechopen.com/books/10452.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zarif Bin Akhtar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.