Mobility Patterns Mining Algorithms with Fast Speed
DOI:
https://doi.org/10.4108/eai.5-11-2015.150603Keywords:
mobility patterns, mobility rules, cellular communication networks, data mining, mobility predictionAbstract
In recent years, mobile networks and its applications are developing rapidly. Therefore, the issue to ensure quality of service (QoS) is a key issue for the service providers. The movement prediction of Mobile Users (MUs) is an important problem in cellular communication networks. The movement prediction applications of MUs include automatic bandwidth adjustment, smart handover, location based services,… In this work, we propose two new algorithms named the FindUMP1 algorithm and the FindUMP2 algorithm for mining the next movements of the mobile users. In the FindUMP1 algorithm, we make to reduce the complexity of the traditional UMPMining algorithm. In the FindUMP2 algorithm, we perform to reduce the number of transactions of the User Actual Paths (UAPs) database. The results of our experiments show that our proposed algorithms outperform the traditional UMPMining algorithm in terms of the execution time. In addition, we also propose the UMPOnline algorithm in order to reduce the execution time as adding new data. The benefit of applying the UMPOnline algorithm is that the system can run online in real time. Therefore, we can perform the applications effectively.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Context-aware Systems and Applications
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.