Study of Robot Manipulator Control via Remote Method

Authors

  • Tuan Nguyen Tien Giang University

DOI:

https://doi.org/10.4108/eetcasa.v9i1.3884

Keywords:

Robotics, Intelligent System, Motion Control, Complex System

Abstract

INTRODUCTION: The study introduces a novel approach to the design and management of industrial robots using virtual reality technology, enabling humans to observe a wide range of robot behaviors across various environments.

OBJECTIVES: Through a simulation program, the robot's movements can be reviewed, and a program for real-world task execution can be generated. Furthermore, the research delves into the algorithm governing the interaction between the industrial robot and humans.

METHODS: The robot utilized in this research project has been meticulously refurbished and enhanced from the previously old version robotic manipulator, which lacked an electrical cabinet derived.

RESULTS: Following the mechanical and electrical upgrades, a virtual setup, incorporating a headset and two hand controllers, has been integrated into the robot's control system, enabling control via this device.

CONCLUSION: This control algorithm leverages a shared control approach and artificial potential field methods to facilitate obstacle avoidance through repulsive and attractive forces. Ultimately, the study presents experimental results using the real robot model.

References

Ortigoza, R. S., Marcelino-Aranda, M., Ortigoza, G. S.,Guzman, V. M. H., Molina-Vilchis, M. A., Saldana-Gonzalez, G., ... & Olguin-Carbajal, M. (2012). Wheeledmobile robots: a review. IEEE Latin AmericaTransactions, 10(6), 2209-2217. DOI: https://doi.org/10.1109/TLA.2012.6418124

Zhang, D., & Wei, B. (2017). A review on model referenceadaptive control of robotic manipulators. Annual Reviews in Control, 43, 188-198. DOI: https://doi.org/10.1016/j.arcontrol.2017.02.002

Ngo, H. Q. T., Cao Tri, H., Tu, N. T., Bao, D. N. T., AnhDuy, P. L., Phat, K. M., ... & Tin, N. T. (2022). Design ofreconfigurable mechanism for underactuated robot in thegrounded applications. Cogent Engineering, 9(1), 2095882. DOI: https://doi.org/10.1080/23311916.2022.2095882

García, P. L., Crispel, S., Saerens, E., Verstraten, T., &Lefeber, D. (2020). Compact gearboxes for modernrobotics: A review. Frontiers in Robotics and AI, 7, 103. DOI: https://doi.org/10.3389/frobt.2020.00103

Stan, L., Nicolescu, A. F., Pupăză, C., & Jiga, G. (2023).Digital Twin and web services for robotic deburring inintelligent manufacturing. Journal of IntelligentManufacturing, 34(6), 2765-2781. DOI: https://doi.org/10.1007/s10845-022-01928-x

Li, C., Fu, L., & Wang, L. (2018, June). Innovateengineering education by using virtual laboratory platformbased industrial robot. In 2018 Chinese Control andDecision Conference (CCDC) (pp. 3467-3472). IEEE. DOI: https://doi.org/10.1109/CCDC.2018.8407723

Shi, Y., Wang, T., Yu, J., Xiao, S., Xiong, L., & Yang, L.(2023, January). Virtual Potential Field-Based MotionPlanning for Human-Robot Collaboration viaKinesthetically Guided Teleoperation. In 2023 7thInternational Conference on Robotics, Control andAutomation (ICRCA) (pp. 37-44). IEEE. DOI: https://doi.org/10.1109/ICRCA57894.2023.10087678

Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtualreality interfaces. Computers in Industry, 109, 114-120.

Yu, J., Wang, M., Dong, H., Zhang, Y., & Wu, Z. (2018). Motion control and motion coordination of bionic robotic fish: A review. Journal of Bionic Engineering, 15, 579-598. DOI: https://doi.org/10.1007/s42235-018-0048-2

Ngo, H. Q. T., & Nguyen, M. H. (2022). Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism. Journal of Robotics and Control (JRC), 3(3), 328-337. DOI: https://doi.org/10.18196/jrc.v3i3.14585

Al Mamun, M. A., Nasir, M. T., & Khayyat, A. (2018). Embedded system for motion control of an omnidirectional mobile robot. IEEE Access, 6, 6722-6739. DOI: https://doi.org/10.1109/ACCESS.2018.2794441

Nguyen, T. P., Nguyen, H., & Ngo, H. Q. T. (2023). Visual application of navigation framework in cyber-physical system for mobile robot to prevent disease. International Journal of Advanced Robotic Systems, 20(2), 17298806231162202. DOI: https://doi.org/10.1177/17298806231162202

Beltran-Hernandez, C. C., Petit, D., Ramirez-Alpizar, I. G., Nishi, T., Kikuchi, S., Matsubara, T., & Harada, K. (2020). Learning force control for contact-rich manipulation tasks with rigid position-controlled robots. IEEE Robotics and Automation Letters, 5(4), 5709-5716. DOI: https://doi.org/10.1109/LRA.2020.3010739

Seo, J., Paik, J., & Yim, M. (2019). Modular reconfigurable robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2, 63-88. DOI: https://doi.org/10.1146/annurev-control-053018-023834

Wang, H. (2016). Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Transactions on Automatic Control, 62(2), 948-954. DOI: https://doi.org/10.1109/TAC.2016.2575827

Rajasekaran, V., Aranda, J., Casals, A., & Pons, J. L. (2015). An adaptive control strategy for postural stability using a wearable robot. Robotics and Autonomous Systems, 73, 16-23. DOI: https://doi.org/10.1016/j.robot.2014.11.014

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The International Journal of Human Resource Management, 33(6), 1237-1266. DOI: https://doi.org/10.1080/09585192.2020.1871398

Kunze, L., Hawes, N., Duckett, T., Hanheide, M., & Krajník, T. (2018). Artificial intelligence for long-term robot autonomy: A survey. IEEE Robotics and Automation Letters, 3(4), 4023-4030. DOI: https://doi.org/10.1109/LRA.2018.2860628

Phan, L. A. D., & Ngo, H. Q. T. (2023). Application of the Artificial Intelligence Technique to Recognize and Analyze from the Image Data. In Deep Learning and Other Soft Computing Techniques: Biomedical and Related Applications (pp. 77-89). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-29447-1_8

Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8, 1-14. DOI: https://doi.org/10.1186/s41469-019-0050-0

Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., & Zhang, J. (2020). Artificial intelligence in advanced manufacturing: Current status and future outlook. Journal of Manufacturing Science and Engineering, 142(11), 110804. DOI: https://doi.org/10.1115/1.4047855

Ngo, H. Q. T., Le, V. N., Thien, V. D. N., Nguyen, T. P., & Nguyen, H. (2020). Develop the socially human-aware navigation system using dynamic window approach and optimize cost function for autonomous medical robot. Advances in Mechanical Engineering, 12(12), 1687814020979430. DOI: https://doi.org/10.1177/1687814020979430

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, A review. Cognitive Robotics. DOI: https://doi.org/10.1016/j.cogr.2023.04.001

Nguyen, T. P., Nguyen, H., & Ngo, H. Q. T. (2023). Developing and Evaluating the Context-Aware Performance of Synchronization Control in the Real-Time DOI: https://doi.org/10.1007/s11036-023-02182-y

Network Protocol for the Connected Vehicle. Mobile Networks and Applications, 1-22.

Wang, L. (2019). From intelligence science to intelligent manufacturing. Engineering, 5(4), 615-618. DOI: https://doi.org/10.1016/j.eng.2019.04.011

Nikolakis, N., Maratos, V., & Makris, S. (2019). A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robotics and Computer-Integrated Manufacturing, 56, 233-243. DOI: https://doi.org/10.1016/j.rcim.2018.10.003

Ngo, H. Q. T., Nguyen, H., & Nguyen, T. P. (2023). Fenceless Collision free Avoidance Driven by Visual Computation for an Intelligent Cyber Physical System Employing Both Single and Double S Trajectory. IEEE Transactions on Consumer Electronics. DOI: https://doi.org/10.1109/TCE.2023.3268296

Liu, H., & Wang, L. (2020). Remote human–robot collaboration: A cyber–physical system application for hazard manufacturing environment. Journal of manufacturing systems, 54, 24-34. DOI: https://doi.org/10.1016/j.jmsy.2019.11.001

Zhou, J., Sun, J., Zhang, M., & Ma, Y. (2020). Dependable scheduling for real-time workflows on cyber–physical cloud systems. IEEE Transactions on Industrial Informatics, 17(11), 7820-7829. DOI: https://doi.org/10.1109/TII.2020.3011506

Lee, J., & Kundu, P. (2022). Integrated cyber-physical systems and industrial metaverse for remote manufacturing. Manufacturing Letters, 34, 12-15. DOI: https://doi.org/10.1016/j.mfglet.2022.08.012

Nguyen, T. P., Nguyen, H., & Thinh Ngo, H. Q. (2022). Planning the Emergency Collision Avoidance Strategy Based on Personal Zones for Safe Human-Machine Interaction in Smart Cyber-Physical System. Complexity, 2022. DOI: https://doi.org/10.1155/2022/2992379

Anthes, C., García-Hernández, R. J., Wiedemann, M., & Kranzlmüller, D. (2016, March). State of the art of virtual reality technology. In 2016 IEEE aerospace conference (pp. 1-19). IEEE. DOI: https://doi.org/10.1109/AERO.2016.7500674

Abich IV, J., Parker, J., Murphy, J. S., & Eudy, M. (2021). A review of the evidence for training effectiveness with virtual reality technology. Virtual Reality, 25(4), 919-933. DOI: https://doi.org/10.1007/s10055-020-00498-8

Morimoto, T., Kobayashi, T., Hirata, H., Otani, K., Sugimoto, M., Tsukamoto, M., ... & Mawatari, M. (2022). XR (extended reality: virtual reality, augmented reality, mixed reality) technology in spine medicine: status quo and quo vadis. Journal of Clinical Medicine, 11(2), 470. DOI: https://doi.org/10.3390/jcm11020470

Kohli, V., Tripathi, U., Chamola, V., Rout, B. K., & Kanhere, S. S. (2022). A review on Virtual Reality and Augmented Reality use-cases of Brain Computer Interface based applications for smart cities. Microprocessors and Microsystems, 88, 104392. DOI: https://doi.org/10.1016/j.micpro.2021.104392

Tang, Y. M., & Ho, H. L. (2020). 3D modeling and computer graphics in virtual reality. In mixed reality and three-dimensional computer graphics. IntechOpen. DOI: https://doi.org/10.5772/intechopen.91443

Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtual reality interfaces. Computers in Industry, 109, 114-120. DOI: https://doi.org/10.1016/j.compind.2019.05.001

Malik, A. A., Masood, T., & Bilberg, A. (2020). Virtual reality in manufacturing: immersive and collaborative artificial-reality in design of human-robot workspace. International Journal of Computer Integrated Manufacturing, 33(1), 22-37. DOI: https://doi.org/10.1080/0951192X.2019.1690685

Downloads

Published

25-09-2023

How to Cite

1.
Tuan Nguyen. Study of Robot Manipulator Control via Remote Method. EAI Endorsed Trans Context Aware Syst App [Internet]. 2023 Sep. 25 [cited 2024 May 6];9. Available from: https://publications.eai.eu/index.php/casa/article/view/3884