Manipulation of the Multi-Vehicle System for the Industrial Applications

Authors

DOI:

https://doi.org/10.4108/eetcasa.v9i1.3978

Keywords:

Robotics, Intelligent System, Motion Control, Complex System

Abstract

This approach should indicate some challenges in routing and scheduling for the multi-vehicle system. The proposed method delivers a novel method to generate the free-collision trajectory as well as optimal route from starting point to destination. The estimated time at one node and the classification of load level support vehicle to decide which proper route is and stable movement is reached. From these results, it could be observed that the proposed approach is feasible and effective for many applications. The proposed method for routing and scheduling might be useful in the multi-vehicle system. In the large scale system, some intelligent schemes should be considered to integrate.

References

Nirmale, S., Sharma, A., & Pinjari, A. R. (2023). Multi-vehicle anticipation-based driver behavior models: a synthesis of existing research and future research directions. Transportation Letters, 1-20. DOI: https://doi.org/10.1080/19427867.2023.2231212

Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115-129. DOI: https://doi.org/10.1016/j.cie.2014.10.029

Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & industrial engineering, 99, 300-313. DOI: https://doi.org/10.1016/j.cie.2015.12.007

Huang, S., Teo, R. S. H., & Tan, K. K. (2019). Collision avoidance of multi unmanned aerial vehicles: A review. Annual Reviews in Control, 48, 147-164. DOI: https://doi.org/10.1016/j.arcontrol.2019.10.001

Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia manufacturing, 13, 1206-1214. DOI: https://doi.org/10.1016/j.promfg.2017.09.032

Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access, 8, 220121-220139. DOI: https://doi.org/10.1109/ACCESS.2020.3042874

Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of intelligent manufacturing, 31, 127-182. DOI: https://doi.org/10.1007/s10845-018-1433-8

Ngo, H. Q. T., Nguyen, T. P., & Nguyen, H. (2019, November). Hardware Design for Intelligent IoT Approach to Optimize Parking Slots. In 2019 International Conference on Advanced Computing and Applications (ACOMP) (pp. 171-175). IEEE. DOI: https://doi.org/10.1109/ACOMP.2019.00034

Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. Ieee Access, 6, 3585-3593. DOI: https://doi.org/10.1109/ACCESS.2018.2793265

Ngo, H. Q. T. (2023). Design of automated system for online inspection using the convolutional neural network (CNN) technique in the image processing approach. Results in Engineering, 101346. DOI: https://doi.org/10.1016/j.rineng.2023.101346

Faisal, A., Kamruzzaman, M., Yigitcanlar, T., & Currie, G. (2019). Understanding autonomous vehicles. Journal of transport and land use, 12(1), 45-72. DOI: https://doi.org/10.5198/jtlu.2019.1405

Tran, H. A. M., Ngo, H. Q. T., Nguyen, T. P., & Nguyen, H. (2018, November). Research on aerial vehicle for robust navigation system under natural disaster. In 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) (pp. 306-311). IEEE. DOI: https://doi.org/10.1109/GTSD.2018.8595612

Ngo, H. Q. T., Nguyen, H., & Nguyen, T. P. (2022). Approaching to the stable transportation based on motion profile phases for material handling system. Journal of Cleaner Production, 371, 133257. DOI: https://doi.org/10.1016/j.jclepro.2022.133257

Figliozzi, M., & Jennings, D. (2020). Autonomous delivery robots and their potential impacts on urban freight energy consumption and emissions. Transportation research procedia, 46, 21-28. DOI: https://doi.org/10.1016/j.trpro.2020.03.159

Khalaji, A. K., & Moosavian, S. A. A. (2016). Stabilization of a tractor-trailer wheeled robot. Journal of Mechanical Science and Technology, 30, 421-428. DOI: https://doi.org/10.1007/s12206-015-1246-z

Milanowicz, M., Budziszewski, P., & Kędzior, K. (2018). Numerical analysis of passive safety systems in forklift trucks. Safety science, 101, 98-107. DOI: https://doi.org/10.1016/j.ssci.2017.07.006

Huynh, V. N. S., Ngo, H. Q. T., Nguyen, T. P., & Nguyen, H. (2020). High performance of an adaptive sliding mode controller under varying loads for lifting-type autonomous grounded robot. Applied sciences, 10(17), 5858. DOI: https://doi.org/10.3390/app10175858

Ngo, H. Q. T., Nguyen, T. P., & Nguyen, H. (2019). Research and develop of AGV platform for the logistics warehouse environment. In Proceedings of the Future Technologies Conference (FTC) 2018: Volume 2 (pp. 455-465). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-02683-7_32

Abdirad, M., Krishnan, K. K., & Gupta, D. (2023). Dynamic multi-depot vehicle routing problem in the era of Industry 4.0. International Journal of Procurement Management, 18(1), 68-81. DOI: https://doi.org/10.1504/IJPM.2023.132582

Yao, Q., Tian, Y., Wang, Q., & Wang, S. (2020). Control strategies on path tracking for autonomous vehicle: State of the art and future challenges. IEEE Access, 8, 161211-161222. DOI: https://doi.org/10.1109/ACCESS.2020.3020075

Phuc, T. T., & Ha, P. T. M. (2022, November). A Proposed Model for DDMRP Implementation and Application in a Plastic Manufacturing Company. In International Conference on Material, Machines and Methods for Sustainable Development (pp. 221-228). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-31824-5_27

Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147. DOI: https://doi.org/10.3390/drones6060147

Tran, A. S., Vo, A. H., Tu, D. C. T., & Ngo, H. Q. T. (2021). Dynamical analysis and validation of motion control by filtering performance for aerial robotic system. Journal of Vibroengineering, 23(6), 1456-1475. DOI: https://doi.org/10.21595/jve.2021.22132

Li, S. E., Zheng, Y., Li, K., Wu, Y., Hedrick, J. K., Gao, F., & Zhang, H. (2017). Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities. IEEE Intelligent Transportation Systems Magazine, 9(3), 46-58. DOI: https://doi.org/10.1109/MITS.2017.2709781

Le, T. S., Nguyen, T. P., Nguyen, H., & Ngo, H. Q. T. (2023). Integrating Both Routing and Scheduling Into Motion Planner for Multivehicle System. IEEE Canadian Journal of Electrical and Computer Engineering, 46(1), 56-68. DOI: https://doi.org/10.1109/ICJECE.2022.3218929

Ho, S. C., & Szeto, W. Y. (2017). A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem. Transportation Research Part B: Methodological, 95, 340-363. DOI: https://doi.org/10.1016/j.trb.2016.11.003

Kim, M., Do, Y., & Jeon, J. (2022, January). Wireless ECU reprogramming for multiple vehicles in factories and service centers via WiFi. In 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/IMCOM53663.2022.9721786

Pereira, D. S., De Morais, M. R., Nascimento, L. B., Alsina, P. J., Santos, V. G., Fernandes, D. H., & Silva, M. R. (2020). Zigbee protocol-based communication network for multi-unmanned aerial vehicle networks. IEEE Access, 8, 57762-57771. DOI: https://doi.org/10.1109/ACCESS.2020.2982402

Yuan, G., Ze, Z., Changcheng, H., Chuanqi, H., & Li, C. (2020). In-vehicle localization based on multi-channel Bluetooth Low Energy received signal strength indicator. International Journal of Distributed Sensor Networks, 16(1), 1550147719900093. DOI: https://doi.org/10.1177/1550147719900093

Ngo, H. Q. T., Cao Tri, H., Tu, N. T., Bao, D. N. T., Anh Duy, P. L., Phat, K. M., ... & Tin, N. T. (2022). Design of reconfigurable mechanism for underactuated robot in the grounded applications. Cogent Engineering, 9(1), 2095882. DOI: https://doi.org/10.1080/23311916.2022.2095882

Ngo, H. Q. T. (2021). Recent Researches on Human-Aware Navigation for Autonomous System in the Dynamic Environment: An International Survey. In Context-Aware Systems and Applications: 10th EAI International Conference, ICCASA 2021, Virtual Event, October 28–29, 2021, Proceedings 10 (pp. 267-282). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-93179-7_21

Nguyen, T. P., Nguyen, H., & Ngo, H. Q. T. (2023). Visual application of navigation framework in cyber-physical system for mobile robot to prevent disease. International Journal of Advanced Robotic Systems, 20(2), 17298806231162202. DOI: https://doi.org/10.1177/17298806231162202

Ngo, H. Q. T., Huynh, V. N. S., Nguyen, T. P., & Nguyen, H. (2020). Sustainable agriculture: stable robust control in presence of uncertainties for multi-functional indoor transportation of farm products. Agriculture, 10(11), 523. DOI: https://doi.org/10.3390/agriculture10110523

Duy, N. V. A., & Hà, P. T. M. Điều độ hoạt động của cần cẩu bờ cảng hàng hỗn hợp tại Việt Nam. Science and Technology Development Journal, 20(K6-2017).

Thien, N. H., Phat, N. T., Dung, N. T. A., & Ha, P. T. M. (2022). Designing a warehouse management system in Vietnam.

Yang, Q., Fu, S., Wang, H., & Fang, H. (2021). Machine-learning-enabled cooperative perception for connected autonomous vehicles: Challenges and opportunities. IEEE Network, 35(3), 96-101. DOI: https://doi.org/10.1109/MNET.011.2000560

Eskandarian, A., Wu, C., & Sun, C. (2019). Research advances and challenges of autonomous and connected ground vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(2), 683-711. DOI: https://doi.org/10.1109/TITS.2019.2958352

Niu, Z., Shen, X. S., Zhang, Q., & Tang, Y. (2020). Space-air-ground integrated vehicular network for connected and automated vehicles: Challenges and solutions. Intelligent and Converged Networks, 1(2), 142-169. DOI: https://doi.org/10.23919/ICN.2020.0009

Guanetti, J., Kim, Y., & Borrelli, F. (2018). Control of connected and automated vehicles: State of the art and future challenges. Annual reviews in control, 45, 18-40. DOI: https://doi.org/10.1016/j.arcontrol.2018.04.011

Phan, M. H., Thinh, N. H. Q., Kieu, T. T., & Thai, L. Y. (2020). Redesigning Finished Product Warehouse Layout-A Case Study. Applied Mechanics and Materials, 902, 103-113. DOI: https://doi.org/10.4028/www.scientific.net/AMM.902.103

Chen, J., Zhang, X., Peng, X., Xu, D., & Peng, J. (2022). Efficient routing for multi-AGV based on optimized Ant-agent. Computers & Industrial Engineering, 167, 108042. DOI: https://doi.org/10.1016/j.cie.2022.108042

Downloads

Published

02-10-2023

How to Cite

1.
Vincent L. Manipulation of the Multi-Vehicle System for the Industrial Applications. EAI Endorsed Trans Context Aware Syst App [Internet]. 2023 Oct. 2 [cited 2024 Nov. 24];9. Available from: https://publications.eai.eu/index.php/casa/article/view/3978