Non-Redundant Contour Directional Feature Vectors for Character Recognition
DOI:
https://doi.org/10.4108/eai.19-11-2020.167204Keywords:
OCR, Odia character recognition, pattern recognition, classification, feature extractionAbstract
This paper presents a novel shape based feature for printed character recognition. The shape features are derived from the contour of the character which is unique to all characters. Preprocessing is performed to standardize the characters and handle all variations such as bold, italics and bold-italics font characteristics. The complete character set is clustered into different groups based on contour feature. A probe character is mapped into the corresponding cluster prior to recognition. This helps to reduce the computational overhead. Finally two recognition schemes have been proposed, based on angle feature extracted from the contour information and a longest common substring (LCS) based feature. Simulation has been carried out to validate the efficacy of the proposed scheme on printed Odia characters. Performance accuracy has been compared with the existing schemes. In general, it is observed that the proposed scheme outperforms the competitive schemes.
Downloads
Published
How to Cite
Issue
Section
License
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.