Modular Internet of Things system for monitoring, control and alerting in refrigeration systems using ESP32 and Raspberry Pi 4

Authors

  • Mihai Florin Bizdadea Universitatea Națională de Știință și Tehnologie Politehnica București image/svg+xml
  • George Daniel Ghita Universitatea Națională de Știință și Tehnologie Politehnica București image/svg+xml
  • Valentin Gheorghe Apostol Universitatea Națională de Știință și Tehnologie Politehnica București image/svg+xml
  • Horatiu Lucian Pop Universitatea Națională de Știință și Tehnologie Politehnica București image/svg+xml
  • Bogdan Gramescu Universitatea Națională de Știință și Tehnologie Politehnica București image/svg+xml

Keywords:

Iot system, Refrigeration system, Real-time data acquisition, Alerting and notification, industrial automation

Abstract

With the rapid development of Internet of Things (IoT) systems and the increasing need for smart monitoring and control, this paper presents a fully functional platform for collecting, analyzing and controlling data from an experimental setup based on a refrigeration system.

The main goal is the development of a modular architecture that gathers data from multiple sensors in real time, processes it, and displays it through a web interface. The system detects when key parameters deviate from nominal parameters and automatically sends email alerts to prevent failures and reduce system downtime.

The system uses embedded programming on the ESP32-S3 microcontroller to collect data from temperature and pressure sensors. Simultaneously, a Single Board Computer (SBC) Raspberry Pi 4 runs Python scripts that process the data and collect electrical parameters via a dedicated module. Communication between the microcontroller and the SBC is conducted through a Universal Asynchronous Receiver-Transmitter (UART) serial interface. The ESP32-S3 microcontroller handles data acquisition and sends it to the Raspberry Pi 4, which processes and stores the information in a local  Stuctrured Query Language Lite (SQLite) database. The platform supports dynamic thermodynamics calculations using the CoolProp library and visualizes results through the web interface. The experimental setup includes a refrigeration system with R404A refrigerant, featuring a square coil evaporator and an air-cooled condenser.

The implemented platform gathers real-time data from sensors and the electrical energy measurement module, processes it, and displays it on the web interface. The system enables dynamic monitoring and component control by running a logic-based algorithm that continuously checks values and automatically triggers corrective actions, including email notifications, based on system status.

The ESP32-S3 microcontroller includes Pulse Width Modulation (PWM) pins reserved for future connection of frequency converters, designed to regulate the speeds of the compressor and condenser fan. This setup provides a solid basis for developing a smart control system capable not only of passive monitoring but also active intervention on operating parameters, aiming to optimize performance depending on different operating conditions.

This method demonstrates not only the modularity of the proposed IoT platform, but also its ability to perform real-time applied thermodynamic analysis and enable direct regulation of the refrigeration installation, bridging the gap between conventional monitoring and intelligent adaptive control, where existing industrial solutions typically lack such thermodynamical calculation-based control.

References

[1] Agnes Poks et al. Distributed hierarchical control for multiple refrigeration units.; 2022;33(101319)

[2] Nurzaman Ahmed, Nadia Shakoor - Advancing agriculture through IoT, Big Data, and AI: A review of smart technologies enabling sustainability; 2025;10(100848)

[3] Olga Ogorodnyk et al. Development of application programming interface prototype for injection molding machines.; 2021;97(2020.07.005)

[4] Lawrence Aghenta, M. Tariq Iqbal Design and implementation of a low-cost, open source IoT-based SCADA system using ESP32 with OLED, ThingsBoard and MQTT protocol; 2020;4(10.3934/ElectrEng.2020.1.57)

[5] Paweł Dera et al. A new, cost-efficient modular sensor platform for IoT and predictive maintenance in industrial applications; 2025;473(116777)

[6] Zahra Alavikia, Maryam Shabro A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey; 2022;8(2022.01.002)

[7] Chandrabhan Patel et al. IoT-driven monitoring and controlling to improve performance of thermoelectric air conditioning system; 2024;95(110081)

[8] Jihong Zhang, Xiaoquan Chen Research and Design of Embedded Wireless Meal Ordering System Based on SQLite; 2012;25(2012.003.129)

[9] J. Tuhovcak et al. Comparison of heat transfer models for reciprocating compressor 2016;103(2016.04.120)

[10] Ian H. Bell et al. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp; 2014;53(4033999)

[11] Ghiță GD. Îmbunătățirea standului experimentalsad „Răcitor de apă” și analiza în timp real a procesului de vaporizare cu ajutorul unui sistem Internet of Things. Bucharest: Universitatea Națională de Știință și Tehnologie POLITEHNICA București; 2025. Master’s thesis

[12] Bizdadea MF. Îmbunătățirea standului experimentalsad „Răcitor de apă” și analiza în timp real a procesului de condensare cu ajutorul unui sistem Internet of Things. Bucharest: Universitatea Națională de Știință și Tehnologie POLITEHNICA București; 2025. Master’s thesis

[13] Embraco, “Condensing Unit CML90TB3N – Technical Data Sheet”, Version 3, Printed on 12/01/2017.

[14] Popescu G, Pop H, Apostol V, Dobrovicescu A, Vasilescu EE, Ioniță C, Alexandru A, Călușaru MI. Bazele tehnicii frigului. Vol. 4 din colecția Bazele Termodinamicii Tehnice. București: Editura Politehnica Press; 2016. 230 p.

[15] Mahdi Momeni et al. A high-resolution daily experimental performance evaluation of a large-scale industrial vapor-compression refrigeration system based on real-time IoT data monitoring technology; 2021;47(2021.101427)

[16] William L. Luyben Economics/safety trade-off in compression refrigeration with superheat; 2023;267(2022.118322)

[17] Njimboh Henry Alombah et al. Advanced IoT-based monitoring system for real-time photovoltaic performance evaluation: Conception, development and experimental validation; 2025;28(e02763)

[18] R. Dhanasekar et al. Development of mobile car black box with synchronous action of vehicle control unit and android mobile using berlinite material; 2021;46(2021.01.632)

[19] Sebastian Nemetz et al. A standardized corpus for SQLite database forensics; 2018;24(2018.01.015)

[20] Muhammad Irfan Maulana Kusdhany et al. An open-source Python package for lumped parameter modeling of sorbent-filled storage tanks for Hydrogen, CO2, Methane, and other fluids; 2025;150(149793)

[21] Narges Yousefnezhad et al. Security in product lifecycle of IoT devices: A survey; 2020;171(102779)

[22] Bala ȘR. Circuite electronice digitale. Ploiești: Editura Universității Petrol-Gaze din Ploiești; 2023. 320 p

Downloads

Published

2025-09-02

How to Cite

Bizdadea, M. F., Ghita, G. D., Apostol, V. G., Pop, H. L., & Gramescu, B. (2025). Modular Internet of Things system for monitoring, control and alerting in refrigeration systems using ESP32 and Raspberry Pi 4 . EAI Endorsed Transactions on Digital Transformation of Industrial Processes, 1(3). Retrieved from https://publications.eai.eu/index.php/dtip/article/view/9792