A Low-Cost Framework for Textile Yarn Characterization Using Image Processing

Authors

Keywords:

Image Processing, Yarn Characterization, Quality Control, Hairiness, Digitalization, Defects, Low-Cost System

Abstract

The textile industry increasingly demands innovative and cost-effective solutions for yarn quality assessment, as conventional equipment is costly and occupies substantial space. This work presents a compact, low-cost image processing framework to characterize key yarn parameters, providing a foundation for future automated quality control systems. The framework employs classical image processing techniques—smoothing, thresholding, segmentation, and morphological operations—implemented with open-source tools such as Visual Studio and OpenCV. An experimental setup using low-cost hardware enabled the acquisition of high-quality images under controlled conditions. The system extracted parameters including linear mass, average diameter, specific volume, defect quantification, hairiness coefficient, and twist direction and pitch. Tests on three yarn types (cotton and polyester) produced results comparable to the industrial reference Uster Tester 3, with error rates below 7%. The proposed solution offers an affordable alternative for small industries and research laboratories, with potential for future integration of advanced computer vision and artificial intelligence to enhance defect detection and classification.

References

[1] Yılmaz, K.; Aksu, İ.Ö.; Göçken, M.; Demirdelen, T. Sustainable Textile Manufacturing with Revolutionizing Textile Dyeing: Deep Learning-Based, for Energy Efficiency and Environmental-Impact Reduction, Pioneering Green Practices for a Sustainable Future. Sustainability 2024, 16, 8152. https://doi.org/10.3390/su16188152.

[2] Siliņa L, Dāboliņa I, Lapkovska E. Sustainable textile industry – wishful thinking or the new norm: A review. Journal of Engineered Fibers and Fabrics. 2024;19. doi: 10.1177/15589250231220359.

[3] Hamzi, A.; Habib, A.; Babaarslan, O.; Abushaega, M.M.; Masum, M.; al Mamun, M.A. Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes 2025, 13, 764. https://doi.org/10.3390/pr13030764.

[4] Filipe Pereira, Leandro Pinto, Filomena Soares, Rosa Vasconcelos, José Machado, Vítor Carvalho, Online yarn hairiness– Loop & protruding fibers dataset, Data in Brief, Volume 54, 2024, 110355, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2024.110355.

[5] F. Pereira, V. Carvalho, F. Soares, R. Vasconcelos, J. Machado, 6 - Computer vision techniques for detecting yarn defects, Editor(s): W.K. Wong, In The Textile Institute Book Series, Applications of Computer Vision in Fashion and Textiles, Woodhead Publishing, 2018, Pages 123-145, ISBN 9780081012178, https://doi.org/10.1016/B978-0-08-101217-8.00006-3.

[6] Pereira, F., Carvalho, V., Vasconcelos, R., Soares, F. (2022). A Review in the Use of Artificial Intelligence in Textile Industry. In: Machado, J., Soares, F., Trojanowska, J., Yildirim, S. (eds) Innovations in Mechatronics Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79168-1_34.

[7] Wang L, Lu Y, Pan R, Gao W. Evaluation of yarn appearance on a blackboard based on image processing. Textile Research Journal. 2021;91(19-20):2263-2271. doi:10.1177/00405175211002863.

[8] Pereira, F., Oliveira, E.L., Ferreira, G.G., Sousa, F., Caldas, P. (2022). Textile Yarn Winding and Unwinding System. In: Machado, J., Soares, F., Trojanowska, J., Ottaviano, E. (eds) Innovations in Mechanical Engineering. icieng 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79165-0_33.

[9] Dai, N.; Jin, H.; Xu, K.; Hu, X.; Yuan, Y.; Shi, W. Prediction of Cotton Yarn Quality Based on Attention-GRU. Appl. Sci. 2023, 13, 10003. https://doi.org/10.3390/app131810003.

[10] Kopelmann, K.; Bruns, M.; Nocke, A.; Beitelschmidt, M.; Cherif, C. Characterization of the Viscoelastic Properties of Yarn Materials: Dynamic Mechanical Analysis in Longitudinal Direction. Textiles 2023, 3, 307-318. https://doi.org/10.3390/textiles3030021.

[11] Wang, H.; Han, Z.; Xiong, X.; Song, X.; Shen, C. Enhancing Yarn Quality Wavelength Spectrogram Analysis: A Semi-Supervised Anomaly Detection Approach with Convolutional Autoencoder. Machines 2024, 12, 309. https://doi.org/10.3390/machines12050309.

[12] Idzik, M.; Rybicki, T. Real-Time Prediction of the Yarn Break Position Using Vibration Measurement. Sensors 2025, 25, 299. https://doi.org/10.3390/s25020299.

[13] Rodrigues, M., Pereira, F., Machado, J. (2023). Analysis of Basic Characteristics of Textile Yarn Using Image Processing Techniques. In: Burduk, A., Batako, A., Machado, J., Wyczółkowski, R., Antosz, K., Gola, A. (eds) Advances in Production. ISPEM 2023. Lecture Notes in Networks and Systems, vol 790. Springer, Cham. https://doi.org/10.1007/978-3-031-45021-1_16.

[14] Caldas, P., Sousa, F., Pereira, F. et al. Automatic system for yarn quality analysis by image processing. J Braz. Soc. Mech. Sci. Eng. 44, 565 (2022). https://doi.org/10.1007/s40430-022-03875-3.

[15] Deng, Z., Yu, L., Wang, L. et al. An algorithm for cross-fiber separation in yarn hairiness image processing. Vis Comput 40, 3591–3599 (2024). https://doi.org/10.1007/s00371-023-03053-z.

[16] Gabriela, K., Jiří, M. Changes in hairiness of woven fabrics at the production and finishing stages. Sci Rep 15, 2930 (2025). https://doi.org/10.1038/s41598-025-86610-x.

[17] Liu, Y.; Ge, C.; Su, Z.; Chen, Z.; Gao, C.; Gong, H.; Xu, W.; Xu, D.; Liu, K. Enhancing the Spun Yarn Properties by Controlling Fiber Stress Distribution in the Spinning Triangle with Rotary Heterogeneous Contact Surfaces. Polymers 2023, 15, 176. https://doi.org/10.3390/polym15010176.

[18] Hamzi, A.; Habib, A.; Babaarslan, O.; Abushaega, M.M.; Masum, M.; al Mamun, M.A. Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes 2025, 13, 764. https://doi.org/10.3390/pr13030764.

[19] Jedryka T. A Method for the Determination of Hairiness of Yarn. Textile Research Journal. 1963;33(8):663-665. doi:10.1177/004051756303300811.

[20] Krupincová, G., & Meloun, M. (2013). Yarn hairiness versus quality of yarn. The Journal of The Textile Institute, 104(12), 1312–1319. https://doi.org/10.1080/00405000.2013.800377.

[21] A. Majumdar, 4 - Yarn hairiness and its reduction, Editor(s): R. Alagirusamy, A. Das, In Woodhead Publishing Series in Textiles, Technical Textile Yarns, Woodhead Publishing, 2010, Pages 112-139, ISBN 9781845695491, https://doi.org/10.1533/9781845699475.1.112.

[22] Z. Qiu, J. Wang and W. Gao, "A Computer-Vision-Based Nondestructive Hairiness Measurement System on Yarn Cone Transportation Line," in IEEE Transactions on Instrumentation and Measurement, vol. 73, pp. 1-13, 2024, Art no. 3512513, doi: 10.1109/TIM.2024.3372208.

[23] Guo, M., Gao, W. & Wang, J. Online Measurement of Sizing Yarn Hairiness Based on Computer Vision. Fibers Polym 24, 1539–1552 (2023). https://doi.org/10.1007/s12221-023-00136-5.

[24] Pereira F, Lopes H, Pinto L, et al. Yarn quality analysis by using computer vision and deep learning techniques. Textile Research Journal. 2025;0(0). doi:10.1177/00405175251331205.

[25] Pereira, F.; Macedo, A.; Pinto, L.; Soares, F.; Vasconcelos, R.; Machado, J.; Carvalho, V. Intelligent Computer Vision System for Analysis and Characterization of Yarn Quality. Electronics 2023, 12, 236. https://doi.org/10.3390/electronics12010236.

[26] Zhang, H., Cheng, S., Zhao, Y., Jing, J., Su, Z., & Li, P. (2023). Measurement of yarn apparent evenness based on modified Canny edge detection. The Journal of The Textile Institute, 115(4), 600–606. https://doi.org/10.1080/00405000.2023.2201997.

[27] Zhang H, Zhu H, Yan K, Jing J, Su Z. Yarn apparent evenness detection based on L0 norm smoothing and the expectation maximization method. Textile Research Journal. 2022;93(1-2):422-433. doi:10.1177/00405175221119838.

[28] Z. Li et al., "3-D Measurement of Yarn Unevenness Based on A Low-Cost Multicamera Collaborative System and Signal Analysis," in IEEE Sensors Journal, vol. 24, no. 8, pp. 13343-13353, 15 April15, 2024, doi: 10.1109/JSEN.2024.3370629.

[29] Zhang, Huanhuan & Zhu, Houchun & Jing, Junfeng & Li, Pengfei & Pan, Quan. (2024). Curve-Like Structure Detection Using Multi-Sale and Boundary Assisted Segmentation Network. IEEE Transactions on Instrumentation and Measurement. PP. 1-1. 10.1109/TIM.2024.3350108.

[30] Li, Zhongjian & Pan, Ruru & Zhang, Jie & Li, Bianbian & Gao, Weidong & Bao, Wei. (2015). Measuring the unevenness of yarn apparent diameter from yarn sequence images. Measurement Science and Technology. 27. 015404. 10.1088/0957-0233/27/1/015404.

[31] Wang L, Xu B, Gao W. Multi-perspective measurement of yarn hairiness using mirrored images. Textile Research Journal. 2016;88(6):621-629. doi:10.1177/0040517516685281.

[32] Kulkarni, K.M., Sahu, A.R. (2022). Brief Overview on Study of Various Parameters Affecting the Productivity of Cotton Yarn. In: Kolhe, M.L., Jaju, S.B., Diagavane, P.M. (eds) Smart Technologies for Energy, Environment and Sustainable Development, Vol 1. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6875-3_77.

[33] Patti, A.; Acierno, D. Materials, Weaving Parameters, and Tensile Responses of Woven Textiles. Macromol 2023, 3, 665-680. https://doi.org/10.3390/macromol3030037.

[34] Rotzler, S.; Malzahn, J.; Werft, L.; von Krshiwoblozki, M.; Eppinger, E. Influence of Knitting and Material Parameters on the Quality and Reliability of Knitted Conductor Tracks. Textiles 2022, 2, 524-545. https://doi.org/10.3390/textiles2040030.

[35] Kim, H.-A. Eco-Friendly Fibers Embedded Yarn Structure in High-Performance Fabrics to Improve Moisture Absorption and Drying Properties. Polymers 2023, 15, 581. https://doi.org/10.3390/polym15030581.

[36] Balakrishnan, N.K.; Siebert, S.; Richter, C.; Groten, R.; Seide, G. Effect of Colorants and Process Parameters on the Properties of Dope-Dyed Polylactic Acid Multifilament Yarns. Polymers 2022, 14, 5021. https://doi.org/10.3390/polym14225021.

[37] R. Pinto, F. Pereira, V. Carvalho, F. Soares and R. Vasconcelos, "Yarn linear mass determination using image processing: first insights," IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 198-203, doi: https://doi.org/10.1109/IECON.2019.8926650.

[38] Pereira, F.; Lopes, H.; Pinto, L.; Soares, F.; Vasconcelos, R.; Machado, J.; Carvalho, V. A Novel Deep Learning Approach for Yarn Hairiness Characterization Using an Improved YOLOv5 Algorithm. Appl. Sci. 2025, 15, 149. https://doi.org/10.3390/app15010149.

[39] Gorjanc, D.Š.; Sukič, N. Determination of Optimum Twist Equation for the Long Staple Combed Cotton Ring-Spun Yarn. Fibers 2020, 8, 59. https://doi.org/10.3390/fib8090059.

[40] Yu, C., Wu, W., Zheng, J. et al. A multi-stage adaptive otsu thresholding algorithm for pore segmentation in rock thin-section images. Earth Sci Inform 18, 239 (2025). https://doi.org/10.1007/s12145-025-01716-0.

[41] Hirata, N.S.T.; Papakostas, G.A. On Machine-Learning Morphological Image Operators. Mathematics 2021, 9, 1854. https://doi.org/10.3390/math9161854.

[42] Wang, T.-K.; Yu, Y.-W.; Yang, T.-H.; Huang, P.-D.; Zhu, G.-Y.; Lau, C.-C.; Sun, C.-C. Depth Image Completion through Iterative Low-Pass Filtering. Appl. Sci. 2024, 14, 696. https://doi.org/10.3390/app14020696.

[43] BAŞER, GÜNGÖR. (2021). Determination of Yarn Diameter and Relevant Applications in Various Theoretical and Practical Problems. Tekstil ve Muhendis. 28. 134-148. 10.7216/1300759920212812207.

[44] Xu, Y., Hu, H., & Yuan, X. (2011). Geometrical analysis of co‐woven knitted preform for composite reinforcement. The Journal of The Textile Institute, 102(5), 405–418. https://doi.org/10.1080/00405000.2010.482346.

[45] Abdelkader, M. MATLAB Algorithms for Diameter Measurements of Textile Yarns and Fibers through Image Processing Techniques. Materials 2022, 15, 1299. https://doi.org/10.3390/ma15041299.

[46] Haleem, N., Malik, Z.A., Malik, M.H. et al. Predicting the air permeability of polyester/cotton blended woven fabrics. Fibers Polym 14, 1172–1178 (2013). https://doi.org/10.1007/s12221-013-1172-6.

[47] Valenzuela, W.; Saavedra, A.; Zarkesh-Ha, P.; Figueroa, M. Motion-Based Object Location on a Smart Image Sensor Using On-Pixel Memory. Sensors 2022, 22, 6538. https://doi.org/10.3390/s22176538.

[48] Fabijańska, A., Jackowska-Strumiłło, L. Image processing and analysis algorithms for yarn hairiness determination. Machine Vision and Applications 23, 527–540 (2012). https://doi.org/10.1007/s00138-012-0411-y .

[49] Wang, T.; Yamakawa, Y. Edge-Supervised Linear Object Skeletonization for High-Speed Camera. Sensors 2023, 23, 5721. https://doi.org/10.3390/s23125721.

[50] Jaouadi, M., Msahli, S., & Sakli, F. (2009). Contribution to measurement of real yarn diameter. The Journal of The Textile Institute, 100(2), 158–164. https://doi.org/10.1080/00405000701757487.

[51] Chandrasekaran, V., Senthilkumar, P. & Senthilkumar, M. Yarn Sample Preparation Techniques and Yarn Diameter Measurement for Analysing Cut-Cross Sectional View of Hollow Core Dref Spun Yarns. J. Inst. Eng. India Ser. E 95, 89–95 (2014). https://doi.org/10.1007/s40034-014-0041-1.

[52] Liu, X.; Zhang, Z.; Hao, Y.; Zhao, H.; Yang, Y. Optimized OTSU Segmentation Algorithm-Based Temperature Feature Extraction Method for Infrared Images of Electrical Equipment. Sensors 2024, 24, 1126. https://doi.org/10.3390/s24041126.

[53] Zheng, J.; Gao, Y.; Zhang, H.; Lei, Y.; Zhang, J. OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Appl. Sci. 2022, 12, 11514. https://doi.org/10.3390/app122211514.

[54] Karakus, P. Detection of Water Surface Using Canny and Otsu Threshold Methods with Machine Learning Algorithms on Google Earth Engine: A Case Study of Lake Van. Appl. Sci. 2025, 15, 2903. https://doi.org/10.3390/app15062903.

[55] Gorjanc, D.Š.; Sukič, N. Determination of Optimum Twist Equation for the Long Staple Combed Cotton Ring-Spun Yarn. Fibers 2020, 8, 59. https://doi.org/10.3390/fib8090059.

[56] Ozkaya, Y. A., Acar, M., & Jackson, M. R. (2008). Yarn twist measurement using digital imaging. The Journal of The Textile Institute, 101(2), 91–100. https://doi.org/10.1080/00405000802263476.

[57] Hevner A., et al. (2004) Design Science in Information Systems Research. MIS Quarterly, 28, 75-105. https://doi.org/10.2307/25148625.

[58] March, Salvatore. (1995). Design and Natural Sciences Research in Information Technology. Decision Support Systems. 15. 251-266. 10.1016/0167-9236(94)00041-2.

[59] Salvatore T. March, Gerald F. Smith, Design and natural science research in information technology, Decision Support Systems, Volume 15, Issue 4, 1995, Pages 251–266, ISSN 0167-9236, https://doi.org/10.1016/0167-9236(94)00041-2.

[60] Venable, J., Pries-Heje, J. & Baskerville, R. FEDS: a Framework for Evaluation in Design Science Research. Eur J Inf Syst 25, 77–89 (2016). https://doi.org/10.1057/ejis.2014.36.

[61] Bangare, Sunil & Dubal, Amruta Abasaheb & Bangare, Smit & Patil, Suhas. (2015). Reviewing Otsu’s Method For Image Thresholding. International Journal of Applied Engineering Research. 10. 21777-21783. 10.37622/IJAER/10.9.2015.21777-21783.

Downloads

Published

2025-08-12

How to Cite

Pereira, F., Oliveira, M., Soares, F., Vasconcelos, R., & Carvalho, V. (2025). A Low-Cost Framework for Textile Yarn Characterization Using Image Processing. EAI Endorsed Transactions on Digital Transformation of Industrial Processes, 1(2). Retrieved from https://publications.eai.eu/index.php/dtip/article/view/9846

Most read articles by the same author(s)