Breaking Barriers: Digital Personal Assistants for the Inclusion of Workers with Disabilities in Production

Authors

  • Markus Brillinger FH JOANNEUM University of Applied Sciences image/svg+xml
  • I. Unterkircher Pro2Future GmbH Research Centre
  • F. Lackner Pro2Future GmbH Research Centre
  • C. Zwickl Pro2Future GmbH Research Centre
  • P. Eisele Pro2Future GmbH Research Centre
  • D. Peraković University of Zagreb image/svg+xml
  • M. Periša University of Zagreb image/svg+xml
  • I. Cvitić University of Zagreb image/svg+xml
  • P. Teskera University of Zagreb image/svg+xml
  • S. Teixeira University of Minho image/svg+xml
  • J. C. Teixeira University of Minho image/svg+xml

Keywords:

Disabilities in Production, Digital Personal Assistance, Cognitive Production

Abstract

INTRODUCTION: This paper introduces Digital Personal Assistants (DPAs) as tools to support inclusive employment for workers with disabilities in industrial production.

OBJECTIVES: The aim is to design a DPA that enables barrier-free access to work-related information.

METHODS: DPAs are developed for multiple devices, focusing on accessibility, and task support—co-designed with workers with disabilities.

RESULTS: A possible implementation of a DPAs is shown in this paper.

CONCLUSION: User-centered DPAs can help reduce barriers and support inclusion in production.

References

[1] Harper S. Economic and social implications of aging societies. Science. 2014;346(6209):587–91. https://doi.org/10.1126/science.1254405

[2] Acemoglu D, Restrepo P. Automation and new tasks: How technology displaces and reinstates labor. J Econ Perspect. 2019;33(2):3–30. https://doi.org/10.1257/jep.33.2.3

[3] Kaye HS. Impact of the 2007–09 recession on workers with disabilities. Mon Labor Rev. 2010;133:19.

[4] European Commission. European comparative data on persons with disabilities. Luxembourg: European Commission; 2025.

[5] OECD. Disability, work and inclusion: Mainstreaming in all policies and practices. Paris: OECD Publishing; 2022. https://doi.org/10.1787/1eaa5e9c-en

[6] Narayanan S, Terris DD, Swink M, Narayanan A. Inclusive manufacturing: The impact of disability diversity on productivity in a work integration social enterprise. Manuf Serv Oper Manag. 2020;22(6):1112–30. https://doi.org/10.1287/msom.2020.0940

[7] Hutchinson C, Ortlieb R, Sheehan M, Prowse P. Beyond the bottom line: assessing the social return on investment of a disability-inclusive social enterprise. Soc Enterp J. 2024;20(5):951–68. https://doi.org/10.1108/SEJ-08-2023-0101

[8] Khan S. Diversity disclosures among UK firms. Corp Soc Responsib Environ Manag. 2019;26(1):170–85. https://doi.org/10.1002/csr.1669

[9] Zhang Y, Zhang Y, Jin M, Yang X. Maximizing disability diversity, language diversity, and productivity: A study in apparel manufacturing. Prod Oper Manag. 2023;32(12):3783–800. https://doi.org/10.1111/poms.1407

[10] Jing J, Li Z, Zhou R, Liu H. Does the inclusion of disabled employees affect firm performance? Empirical evidence from China. Sustainability. 2022;14(13):7835. https://doi.org/10.3390/su14137835

[11] Steinfeld E, Maisel J. Universal design: Creating inclusive environments. Hoboken (NJ): John Wiley & Sons; 2012.

[12] Lindsay S, Leck J, Shen W, Cagliostro E, Stinson J. A framework for developing employer’s disability confidence. Equal Divers Incl Int J. 2019;38(1):40–55.

[13] Brillinger M, Jahani Maleki P. I5.0 as enabler to prevail disability in production. In: Proceedings of the 13th Conference on Learning Factories (CLF 2023); 2023 May 23. Available from: https://ssrn.com/abstract=4456437 https://doi.org/10.2139/ssrn.4456437

[14] Abdul Hadi M, Brillinger M, Haas F. Adaptive assembly approach for E-axles. In: Knapcikova L, Balog M, Perakovic D, Perisa M, editors. 4th EAI International Conference on Management of Manufacturing Systems. Cham: Springer; 2020. p. 267–75. (EAI/Springer Innovations in Communication and Computing). https://doi.org/10.1007/978-3-030-34272-2_23

[15] Zäh MF, Ostgathe M, Lau C. The Cognitive Factory. In: ElMaraghy H, editor. Changeable and reconfigurable manufacturing systems. London: Springer; 2009. p. 355–71. https://doi.org/10.1007/978-1-84882-067-8_20

[16] Iarovyi S, Lobov A, Ferrer B, Martinez Lastra JL. From cognitive architectures to artificial cognitive manufacturing. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN); 2015 Jul 22–24; Cambridge, UK. Piscataway (NJ): IEEE; 2015. p. 1225–32. https://doi.org/10.1109/INDIN.2015.7281910

[17] Kaur N, Singh M, Rani R. Cognitive decision making in smart industry. Comput Ind. 2015;74:151–61. https://doi.org/10.1016/j.compind.2015.06.006

[18] Ding C, Yang L, Zhang Y, Xu X. A cloud-edge collaboration framework for cognitive service. IEEE Trans Cloud Comput. 2022;10(3):1489–99. https://doi.org/10.1109/TCC.2020.2997008

[19] Lazaroiu G, Andronie M, Hurloiu I, Dijmărescu I. Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana. 2022;13(4):1047–80.

[20] Valaskova K, Durana P, Adamko P. Deep learning-assisted smart process planning, cognitive automation, and industrial big data analytics in sustainable cyber-physical production systems. J Self-Gov Manag Econ. 2021;9(2):9–20. https://doi.org/10.22381/jsme9220211

[21] Kovacova M, Valaskova K, Lazaroiu G. Smart factory performance, cognitive automation, and industrial big data analytics in sustainable manufacturing Internet of Things. J Self-Gov Manag Econ. 2021;9(3):9–21. https://doi.org/10.22381/jsme9320211

[22] Liu M, Lin J, Wang B, Zheng L. A knowledge graph-based data representation approach for IIoT-enabled cognitive manufacturing. Adv Eng Inform. 2022;51:101515. https://doi.org/10.1016/j.aei.2021.101515

[23] Zheng X, Lu Y, Xu X, Liu C. The emergence of cognitive digital twin: vision, challenges and opportunities. Int J Prod Res. 2022;60(24):7610–32. https://doi.org/10.1080/00207543.2021.2014591

[24] Pacaux-Lemoine MP, Trentesaux D, Millot P, Pino O, Lenne D. Designing human–system cooperation in Industry 4.0 with cognitive work analysis: a first evaluation. Cogn Technol Work. 2022;24:93–111. https://doi.org/10.1007/s10111-021-00667-y

[25] Lagomarsino M, Zappia D, Villani V. An online framework for cognitive load assessment in industrial tasks. Robot Comput Integr Manuf. 2022;78:102380. https://doi.org/10.1016/j.rcim.2022.102380

[26] Mladineo M, Celar S, Marovic I, Kourti T, Radosevic M. Towards a knowledge-based cognitive system for industrial application: Case of personalized products. J Ind Inf Integr. 2022;27:100284. https://doi.org/10.1016/j.jii.2021.100284

[27] Alohali MA, Gumaei A, Hassan MM, Alelaiwi A, Hossain MS. Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in Industry 4.0 environment. Cogn Neurodyn. 2022;16:1045–57. https://doi.org/10.1007/s11571-022-09780-8

[28] Xia L, Zhao J, Yang W, Zeng D. Toward cognitive predictive maintenance: a survey of graph-based approaches. J Manuf Syst. 2022;64:107–20. https://doi.org/10.1016/j.jmsy.2022.06.002

[29] Hadi MA, Brillinger M, Bloder M, Bader M, Ratasich M, Haas F, et al. Implementing cognitive technologies in an assembly line based on two case studies. Procedia CIRP. 2021;97:520–5. https://doi.org/10.1016/j.procir.2020.05.268

[30] Weichhart G, Ferscha A, Mutlu B, et al. Human/machine/robot: technologies for cognitive processes. Elektrotech Inftech. 2019;136:313–7. https://doi.org/10.1007/s00502-019-00740-5

[31] Abdul Hadi M, Kraus D, Kajmakovic A, Suschnigg J, Guiza O, Gashi M, et al. Towards flexible and cognitive production—Addressing the production challenges. Appl Sci. 2022;12(17):8696. https://doi.org/10.3390/app12178696

[32] Hadi MA, Brillinger M, Bloder M, Bader M, Ratasich M, Haas F, et al. Qualitative improvements in an assembly line through cognitive technologies based on two case studies. In: 53rd CIRP Conference on Manufacturing Systems, CMS 2020.

[33] Periša M, Teskera P, Cvitić I, Brillinger M. Conceptual framework for designing assistive technologies in the user’s working environment. In: Knapcikova L, Perakovic D, editors. 9th EAI International Conference on Management of Manufacturing Systems. MMS 2024. Cham: Springer; 2025. p. [Chapter 7]. https://doi.org/10.1007/978-3-031-80881-4_7

[34] Schmid J, Trabesinger S, Brillinger M, Pichler R, Wurzinger J, Ciumasu R. Tacit knowledge based acquisition of verified machining data. In: 2020 9th International Conference on Industrial Technology and Management (ICITM); 2020 Feb. p. 117–21. IEEE. https://doi.org/10.1109/ICITM48982.2020.9080346

[35] Kajmakovic A, Manfredi S, Brillinger M, Leder D. Poster: IOT as enabler of workers’ stress detection in manufacturing systems of the future. In: Proceedings of the 11th International Conference on the Internet of Things; 2021 Nov. p. 196–9. https://doi.org/10.1145/3494322.3494349

[36] Brillinger M, Manfredi S, Leder D, Bloder M, Jäger M, Diwold K, et al. Physiological workload assessment for highly flexible fine-motory assembly tasks using machine learning. Comput Ind Eng. 2024;188:109859. https://doi.org/10.1016/j.cie.2023.109859

[37] Suschnigg J, Ziessler F, Brillinger M, Vukovic M, Mangler J, Schreck T, Thalmann S. Industrial production process improvement by a process engine visual analytics dashboard. In: Proceedings of the Hawaii International Conference on System Sciences (HICSS); 2020 Jan. p. 1–10.

[38] Global Accessibility Reporting Initiative (GARI). Device compliance under the EAA and accessible information.

[39] Global Accessibility Reporting Initiative (GARI). GARI White Paper: Use what’s at hand – Accessible consumer electronics for assistive technology and service delivery.

Downloads

Published

2025-09-12

How to Cite

Brillinger, M., Unterkircher, I., Lackner, F., Zwickl, C., Eisele, P., Peraković, D., Periša, M., Cvitić, I., Teskera, P., Teixeira, S., & Teixeira, J. C. (2025). Breaking Barriers: Digital Personal Assistants for the Inclusion of Workers with Disabilities in Production. EAI Endorsed Transactions on Digital Transformation of Industrial Processes, 1(3). Retrieved from https://publications.eai.eu/index.php/dtip/article/view/9848