Engineering Analysis of the Closed-Type Wind Turbine Diffuser




wind turbine, structural design, angle of attack, energy efficiency, kinetic energy, wind power, design and construction, electrical energy, optimal conditions, renewable resource


In this paper considered the engineering analysis of a diffuser with a closed-type wind power plant  by converting the kinetic energy of the oncoming wind into electrical energy. The study of the wind turbine  diffuser was carried out in order to increase the energy efficiency of converting wind energy into electrical energy. The closed-type wind turbine design is converted into a finite element model for aerodynamic calculations. The model of a closed-type wind turbine is investigated by changing the angle of attack of the  diffuser, with various options for its parameters in order to find the most optimal conditions for increasing the energy efficiency factor of the energy carrier, which will ensure high energy efficiency of converting wind energy into electrical energy. Based on the study results was recommended the diffuser with the optimal angle of attack by constructing a closed-type wind turbine.


Download data is not yet available.


Bekbayev A.B., Shakenov K.B. (2018) Kompleksnoye ispolzovaniye vozobnovlyayemykh istochnikov energii i poputnykh gazov na nefteperekachivayushchikh nasosnykh agregatakh. [Integrated use of renewable energy sources and associated gases at oil pumping units] Materialy IX Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Noveyshiye tekhnologii osvoyeniya mestorozhdeniy uglevodorodnogo syrya i obespecheniye bezopasnosti ekosistem Kaspiyskogo shelfa» [Materials of the IX International Scientific and Practical Conference "The latest technologies for the development of hydrocarbon deposits and ensuring the safety of ecosystems of the Caspian shelf"], AGTU – Astrakhan: Izd-vo AGTU. Pp. 277-279. (in russian)

Bekbayev A.B., Shakenov K.B., Yerkіnov G.Ye., Sagymbayev Zh.A. (2019) Ispolzovaniye energosberegayushchikh tekhnologiy dlya otdelnykh potrebitey rudnikov. [Use of energy-saving technologies for individual consumers of mines.] Trudy Mezhdunarodnykh Satpayevskikh chteniy «Innovatsionnyye tekhnologii – klyuch k uspeshnomu resheniyu fundamentalnykh i prikladnykh zadach v rudnom i neftegazovom sektorakh ekonomiki RK». [Proceedings of the International Satpayev Readings "Innovative technologies are the key to successfully solving fundamental and applied problems in the ore and oil and gas sectors of the economy of the Republic of Kazakhstan"] – Almaty: KazNITU. Vol. II, Pp. 1042-1045. (in russian)

Titkov V.V., Bekbayev A.B., Shakenov K.B. (2018) Analysis of the roof of an autonomous house for efficient use of wind energy. EAI Endorsed Transactions on Energy Web and Information Technologies. Vol. 6, Iss. 21. DOI: 10.4108/eai.12-9-2018.155859. DOI:

Davydova Ye. V., Korchagova V. N., Marchevskiy I. K. (2015) Ispolzovaniye metoda konechnykh elementovs chastitsami dlya resheniya zadach gidrodinamiki. [Use of the finite element method with particles to solve hydrodynamic problems.] Nauka i Obrazovaniye [Science and education.]. MGTU named after N.E. Bauman. No. 6. Pp. 329-345. (in russian)

Idelsohn S.R., Onate E., Del Pin F. (2003) A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Computer and Structures. Vol. 81, No. 8-11. Pp. 655-671. DOI: 10.1016/S0045-7949(02)00477-7. DOI:

Cremonesi, M., Franci, A., Idelsohn, S., Oñate, E. (2020) A State of the Art Review of the Particle Finite Element Method (PFEM). Archives of Computational Methods in Engineering. 27(5). Pp.1709–1735. DOI: 10.1007/s11831-020-09468-4. DOI:

Idelsohn S.R., Onate E., Del Pin F. (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering. Vol. 61, no. 7. Pp. 964-989. DOI: 10.1002/nme.1096. DOI:

Gimenez, J.M., Aguerre, H.J., Idelsohn, S.R., Nigro, N.M. (2019) A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. Journal of Computational Physics. 380. Pp. 295–310. DOI: 10.1016/ DOI:

Chirag J. Parekh, Arnab Roy, Atal Bihari Harichandan. (2018) Numerical simulation of incompressible gusty flow past a circular cylinder. Alexandria Engineering Journal. Vol. 57, Issue 4. Pp. 3321-3332. DOI: 10.1016/j.aej.2017.12.008. DOI:

Kuzmina K.S., Marchevskiy I.K. (2016) High-Order Numerical Scheme for Vortex Layer Intensity Computation in Two-Dimensional Aerohydrodynamics Problems Solved by Vortex Element Method. Herald of the Bauman Moscow State Technical University Series Natural Sciences. No. 6. Pp. 93-109. DOI: 10.18698/1812-3368-2016-6-93-109. DOI:

Farrukh Mazhar, Ali Javed, Jing Tang Xing, Aamer Shahzad, Mohtashim Mansoor, Adnan Maqsood, Syed Irtiza Ali Shah, Kamran Asim. (2021) On the meshfree particle methods for fluid-structure interaction problems. Engineering Analysis with Boundary Elements. Vol. 124. P. 14-40. DOI: 10.1016/j.enganabound.2020.11.005. DOI:

Guibin Zhang, Jianyun Chen, Youting Qi, Jing Li, Qiang Xu. (2021) Numerical simulation of landslide generated impulse waves using a δ+-LES-SPH model. Advances in Water Resources. Vol. 151, 103890. DOI: 10.1016/j.advwatres.2021.103890. DOI:

Idelsohn S.R., Onate E. (2006) To mesh or not to mesh. That is the question... Computer Methods in Applied Mechanics and Engineering. Vol. 195, iss. 37-40. Pp. 4681-4696. DOI: 10.1016/j.cma.2005.11.006. DOI:

Bravo, R., Ortiz, P., Idelsohn, S. et al. (2020) Sediment transport problems by the particle finite element method (PFEM). Comp. Part. Mech. 7. Pp. 139–149. DOI: 10.1007/s40571-019-00255-y. DOI:

Ma, Q.W., Zhou, Y. & Yan, S. (2016) A review on approaches to solving Poisson’s equation in projection-based meshless methods for modelling strongly nonlinear water waves. J. Ocean Eng. Mar. Energy. 2. Pp. 279–299. DOI: 10.1007/s40722-016-0063-5. DOI:

Kaya U, Becker R, Braack M. (2021) Local pressure-correction for the Navier-Stokesequations. International Journal for Numerical Methods in Fluids. Vol. 93, Issue 4. Pp. 1199–1212. DOI: 10.1002/fld.4925. DOI:

Temam R. Uravneniye Navye-Stoksa. (1981) Teoriya i chislennyy analiz [Navier-Stokes equation. Theory and numerical analysis]. – M.: Mir. 408 p. (in russian)

Chorin A.J. (1997) A numerical method for solving incompressible viscous flow problems. Journal of Computation Physics. Vol. 135, iss. 2. Pp. 118-125. DOI: 10.1006/jcph.1997.5716. DOI:

Briley W.R., McDonald H. (1977) Solution of the multidimensional Navier-Stokes equations by a generalized implicit method. Journal of Computation Physics. 24(4). Pp. 372-397. DOI: 10.1016/0021-9991(77)90029-8. DOI:

Briley W.R., McDonald H., Shamroth S.J. (1983) A low Mach number Euler formulation and application to time-iterative LBI schemes. AIAA Journal. Vol. 21, No. 10. Pp.1464-1469. DOI: 10.2514/3.8291. DOI:

Asset A. Durmagambetov, Leyla S. Fazilova. (2015) Navier-Stokes Equations―Millennium Prize Problems. Natural Science. Vol.7, No. 2. Pp.88-99. DOI: 10.4236/ns.2015.72010. DOI:

Hyeong-Ohk Bae. (2018) Regularity of the 3D Navier–Stokes equations with viewpoint of 2D flow. Journal of Differential Equations 264(7). Pp. 4889-4900. DOI: 10.1016/j.jde.2017.12.026. DOI:

Hui Chen, Daoyuan Fang, Ting Zhang. (2017) Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems. 37(4). Pp. 1923-1939. DOI: DOI:

Chenyin Qian. (2016) A remark on the global regularity for the 3D Navier–Stokes equations. Applied Mathematics Letters. 57. Pp. 126-131. DOI: 10.1016/j.aml.2016.01.016. DOI:

J. Gibbon and Nairita Pal and A. Gupta and R. Pandit. (2016) Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations. Physical review. E. 94(6), 063103. DOI:10.1103/PhysRevE.94.063103. DOI:

D. Buaria and A. Pumir and E. Bodenschatz. (2020) Self-attenuation of extreme events in Navier–Stokes turbulence. Nature Communications. 11, 5852. DOI: 10.1038/s41467-020-19530-1. DOI:

Aristov, S.N., Prosviryakov, E.Y. (2016) Nonuniform convective Couette flow. Fluid Dyn. 51. Pp. 581–587. DOI: 10.1134/S001546281605001X DOI:

Aristov, S.N., Prosviryakov, E.Y. (2016) A new class of exact solutions for three-dimensional thermal diffusion equations. Theor. Found. Chem. Eng. 50. Pp. 286–293. DOI: 10.1134/S0040579516030027. DOI:

Bubenchikov A. A., Gorlinskiy N. A., Shcherbinov V. V. (2016) Kontsentratory potokov dlya vetroenergeticheskikh ustanovok [Concentrators for wind turbines]. Molodoy uchenyy [Young scientist]. No. 28.2 (132.2). Pp. 10-14. [Online] URL: (reference date: 18.12.2020). (in russian)

Simon D. Hornshøj-Møller, Peter D. Nielsen, Pourya Forooghi, Mahdi Abkar. (2021) Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes. Renewable Energy. 164. Pp. 1550-1558. DOI: 10.1016/j.renene.2020.10.148. DOI:




How to Cite

Shakenov KB, Tolemis MT. Engineering Analysis of the Closed-Type Wind Turbine Diffuser. EAI Endorsed Trans Energy Web [Internet]. 2023 Feb. 16 [cited 2024 Apr. 18];9(5):e2. Available from: