Intelligent Control of Solar LED Street Lamp Based on Adaptive Fuzzy PI Control
DOI:
https://doi.org/10.4108/ew.3815Keywords:
fireworks algorithm, fuzzy control, PI control, adaptive, intelligent control of streetlightsAbstract
As road traffic develops, energy-saving and efficient street lights have become a key research field for relevant professionals. To reduce street lights energy consumption, a fireworks algorithm is used to optimize the membership function parameters of fuzzy control and the initial parameters of PI control. A fireworks algorithm improved adaptive fuzzy PI solar LED street light control system is designed. The results showed that in the calculation of Root-mean-square deviation and Mean absolute error, the Root-mean-square deviation of the adaptive fuzzy PI control system improved by the fireworks algorithm was 0.213, 0.258, 0.243, 0.220, and the Mean absolute error was 0.143, 0.152, 0.154, 0.139, respectively, which proved that the prediction accuracy was high and the stability was good. In the calculation of the 1-day power consumption of the solar LED intelligent control system, the average power consumption of the designed solar LED intelligent control system was about 2000W, which was 25.9%, 47.4%, and 42.9% lower than the other three control methods, respectively. This proves that its energy consumption is low, and its heat generation is low, and the battery service life is long. The research and design of an adaptive fuzzy PI control solar LED street light intelligent control system has good performance, which can effectively achieve intelligent management and energy conservation and emission reduction in smart cities.
Downloads
References
Usman A M, Abdullah M K. An Assessment of Building Energy Consumption Characteristics Using Analytical Energy and Carbon Footprint Assessment Model. Green and Low-Carbon Economy, 2023, 1(1): 28-40. DOI: https://doi.org/10.47852/bonviewGLCE3202545
Gagliardi G, Lupia M, Cario G, Tedesco F, Cicchello Gaccio F, Lo Scudo F, Casavola A. Advanced adaptive street lighting systems for smart cities. Smart Cities, 2020, 3(4): 1495-1512. DOI: https://doi.org/10.3390/smartcities3040071
Strielkowski W, Veinbender T, Tvaronavičienė M, Lace N. Economic efficiency and energy security of smart cities. Economic research-Ekonomska istraživanja, 2020, 33(1): 788-803. DOI: https://doi.org/10.1080/1331677X.2020.1734854
Chen X. The intelligent street light control system for preventing heavy fog of expressway based on zigbee. Wireless Personal Communications, 2021, 121(1): 353-359. DOI: https://doi.org/10.1007/s11277-021-08639-1
Smys D S, Basar D A, Wang D H. Artificial neural network based power management for smart street lighting systems. Journal of Artificial Intelligence and Capsule Networks, 2020, 2(1): 42-52. DOI: https://doi.org/10.36548/jaicn.2020.1.005
Carli R, Dotoli M. A dynamic programming approach for the decentralized control of energy retrofit in large-scale street lighting systems. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1140-1157. DOI: https://doi.org/10.1109/TASE.2020.2966738
Khandagale H P, Zambare R, Pawar P, Jadhav P, Patil P, Mule S. Street light controller with GSM technology. International Journal of Engineering Applied Sciences and Technology, 2020, 4(10): 268-271. DOI: https://doi.org/10.33564/IJEAST.2020.v04i10.051
Ahmad S, Siddique A, Iqbal K, Hussain A, Ijaz A. lOT Based Smart Street Light Empowered by Pizeoelectric Sensors. International Journal of Scientific & Technology Research, 2021, 10(1): 341-345.
Kumar N, Rahman S S, Dhakad N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 4919-4928. DOI: https://doi.org/10.1109/TITS.2020.2984033
Kornaga V I, Pekur D V, Kolomzarov Y V, Sorokin V M, Nikolaenko Y E. Design of a LED driver with a flyback topology for intelligent lighting systems with high power and efficiency. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2023, 26(2): 222-229. DOI: https://doi.org/10.15407/spqeo26.02.222
de Oliveira Reis O A, Pires R A, dos Reis A K C, Silva E G. Protótipo de um sistema de iluminação e tomada inteligente com o uso da plataforma arduino e internet das coisas. Brazilian Journal of Development, 2021, 7(6): 60103-60118. DOI: https://doi.org/10.34117/bjdv7n6-410
JIA R, WU W E I. Case study on intelligent road lighting in foreign countries under the background of smart city. Journal of Humanities and Social Sciences Studies, 2022, 4(1): 235-245. DOI: https://doi.org/10.32996/jhsss.2022.4.1.23
Gong S, Kumar R, Kumutha D. Design of lighting intelligent control system based on OpenCV image processing technology. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2021, 29(1): 119-139. DOI: https://doi.org/10.1142/S0218488521400079
Abdullah A, Yusoff S H, Zaini S A, Midi N S, ohamad S Y. Energy efficient smart street light for smart city using sensors and controller. Bulletin of Electrical Engineering and Informatics, 2019, 8(2): 558-568. DOI: https://doi.org/10.11591/eei.v8i2.1527
Yap K Y, Sarimuthu C R, Lim J M Y. Artificial intelligence based MPPT techniques for solar power system: A review. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1043-1059. DOI: https://doi.org/10.35833/MPCE.2020.000159
Yadav A M, Tripathi K N, Sharma S C. A bi-objective task scheduling approach in fog computing using hybrid fireworks algorithm. The Journal of Supercomputing, 2022, 78(3): 4236-4260. DOI: https://doi.org/10.1007/s11227-021-04018-6
Han S, Zhu K, Zhou M C, Liu X, Liu H, Al-Turki Y, Abusorrah A. A novel multiobjective fireworks algorithm and its applications to imbalanced distance minimization problems. IEEE/CAA Journal of Automatica Sinica, 2022, 9(8): 1476-1489. DOI: https://doi.org/10.1109/JAS.2022.105752
Shen X, Lu J, You X, Song L, Ge Z. A region enhanced discrete multi-objective fireworks algorithm for low-carbon vehicle routing problem. Complex System Modeling and Simulation, 2022, 2(2): 142-155. DOI: https://doi.org/10.23919/CSMS.2022.0008
Mahmood T, Ali Z. Analysis of Maclaurin symmetric mean operators for managing complex interval-valued q-Rung orthopair fuzzy setting and their applications. Journal of Computational and Cognitive Engineering, 2023, 2(2): 98-115. DOI: https://doi.org/10.47852/bonviewJCCE2202164
Mnif M G, Bouamama S. A new multi-objective firework algorithm to solve the multimodal planning network problem. International Journal of Applied Metaheuristic Computing (IJAMC), 2020, 11(4): 91-113. DOI: https://doi.org/10.4018/IJAMC.2020100105
Wang W, Liu K, Yang C, Xu B, Ma M. Cyber physical energy optimization control design for PHEVs based on enhanced firework algorithm. IEEE Transactions on Vehicular Technology, 2020, 70(1): 282-291. DOI: https://doi.org/10.1109/TVT.2020.3046520
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.