State-of-the-art review on energy management systems, challenges and top trends of renewable energy based microgrids

Authors

  • Yefan Wu State Grid Zhangye Electric Power Supply Company
  • JinZhu Cui State Grid Zhangye Electric Power Supply Company
  • Caiyan Liu State Grid Zhangye Electric Power Supply Company

DOI:

https://doi.org/10.4108/ew.4124

Keywords:

Renewable energy resource, Microgrid, Energy storage systems, distributed energy source, Energy Management System

Abstract

Due to the increasing demand for electrical energy worldwide and environmental concerns, modern power systems are looking for a fundamental change. These changes include reducing dependence on the primary electricity grid and using renewable energy sources on a large scale. The emergence of microgrids in electrical energy systems will improve the level of these systems due to technical, economic, and environmental benefits. In this research work, the authors have conducted extensive studies on control methods, types of power sources, and the size of microgrids and analyzed them in tabular form. In addition, the review of communication technologies and standards in microgrids, as well as the review of microgrid energy management systems to optimize the efficiency of microgrids, is one of the main goals of the authors in this article. Also, in this article, the top 10 trends of microgrids in 2023 have been examined to increase the flexibility of network infrastructure, which helps readers to improve their strategic decisions by providing an overview of emerging technologies in the energy industry.

Downloads

Download data is not yet available.

References

Mariam, L., M. Basu, and M.F. Conlon, A review of existing microgrid architectures. Journal of engineering, 2013. 2013. DOI: https://doi.org/10.1155/2013/937614

Aderibole, A., H.H. Zeineldin, and M. Al Hosani, A critical assessment of oscillatory modes in multi-microgrids comprising of synchronous and inverter-based distributed generation. IEEE Transactions on Smart Grid, 2018. 10(3): p. 3320-3330. DOI: https://doi.org/10.1109/TSG.2018.2824330

Jafari, M., et al., Development of a fuzzy-logic-based energy management system for a multiport multioperation mode residential smart microgrid. IEEE Transactions on Power Electronics, 2018. 34(4): p. 3283-3301. DOI: https://doi.org/10.1109/TPEL.2018.2850852

Fang, X., et al., Smart grid—The new and improved power grid: A survey. IEEE communications surveys & tutorials, 2011. 14(4): p. 944-980. DOI: https://doi.org/10.1109/SURV.2011.101911.00087

Gharavi, H. and R. Ghafurian, Smart grid: The electric energy system of the future. Vol. 99. 2011: IEEE Piscataway, NJ, USA. DOI: https://doi.org/10.1109/JPROC.2011.2124210

Yoldaş, Y., et al., Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 2017. 72: p. 205-214. DOI: https://doi.org/10.1016/j.rser.2017.01.064

Gutiérrez-Oliva, D., A. Colmenar-Santos, and E. Rosales-Asensio, A review of the state of the art of industrial microgrids based on renewable energy. Electronics, 2022. 11(7): p. 1002. DOI: https://doi.org/10.3390/electronics11071002

Saeed, M.H., et al., A review on microgrids’ challenges & perspectives. IEEE Access, 2021. 9: p. 166502-166517. DOI: https://doi.org/10.1109/ACCESS.2021.3135083

Li, Q., Z. Xu, and L. Yang, Recent advancements on the development of microgrids. Journal of modern power systems and clean energy, 2014. 2(3): p. 206-211. DOI: https://doi.org/10.1007/s40565-014-0069-8

Abbasi, M., et al., Review on the microgrid concept, structures, components, communication systems, and control methods. Energies, 2023. 16(1): p. 484. DOI: https://doi.org/10.3390/en16010484

Rocabert, J., et al., Control of power converters in AC microgrids. IEEE transactions on power electronics, 2012. 27(11): p. 4734-4749. DOI: https://doi.org/10.1109/TPEL.2012.2199334

Han, Y., et al., Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Transactions on Power Electronics, 2016. 32(3): p. 2427-2451. DOI: https://doi.org/10.1109/TPEL.2016.2569597

Hartono, B., Y. Budiyanto, and R. Setiabudy. Review of microgrid technology. in 2013 international conference on QiR. 2013. IEEE. DOI: https://doi.org/10.1109/QiR.2013.6632550

Uddin, M., et al., Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, 2023. 49: p. 101127. DOI: https://doi.org/10.1016/j.esr.2023.101127

Abdi, H., A Brief Review of Microgrid Surveys, by Focusing on Energy Management System. Sustainability, 2022. 15(1): p. 284. DOI: https://doi.org/10.3390/su15010284

Yu, C.-Y., et al. A Study of Modelling and Inverter Controls for AC Microgrid Simulation. in Proceedings of the World Congress on Engineering. 2017.

Bihari, S.P., et al., A comprehensive review of microgrid control mechanism and impact assessment for hybrid renewable energy integration. IEEE access, 2021. 9: p. 88942-88958. DOI: https://doi.org/10.1109/ACCESS.2021.3090266

Patnaik, B., et al., AC microgrid protection–A review: Current and future prospective. Applied Energy, 2020. 271: p. 115210. DOI: https://doi.org/10.1016/j.apenergy.2020.115210

Shahbazbegian, V., et al., Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology. Energy, 2023: p. 128430. DOI: https://doi.org/10.1016/j.energy.2023.128430

Lorestani, A. and M. Ardehali, Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm. Renewable Energy, 2018. 119: p. 490-503. DOI: https://doi.org/10.1016/j.renene.2017.12.037

Soshinskaya, M., et al., Microgrids: Experiences, barriers and success factors. Renewable and sustainable energy reviews, 2014. 40: p. 659-672. DOI: https://doi.org/10.1016/j.rser.2014.07.198

Shahzad, S., et al., Possibilities, Challenges, and Future Opportunities of Microgrids: A Review. Sustainability, 2023. 15(8): p. 6366. DOI: https://doi.org/10.3390/su15086366

Sami, M.S., et al., Energy management of microgrids for smart cities: A review. Energies, 2021. 14(18): p. 5976. DOI: https://doi.org/10.3390/en14185976

Hirsch, A., Y. Parag, and J. Guerrero, Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and sustainable Energy reviews, 2018. 90: p. 402-411. DOI: https://doi.org/10.1016/j.rser.2018.03.040

Chartier, S.L., et al., Microgrid emergence, integration, and influence on the future energy generation equilibrium—A Review. Electronics, 2022. 11(5): p. 791. DOI: https://doi.org/10.3390/electronics11050791

Al-Ismail, F.S., DC microgrid planning, operation, and control: A comprehensive review. IEEE Access, 2021. 9: p. 36154-36172. DOI: https://doi.org/10.1109/ACCESS.2021.3062840

Espina, E., et al., Distributed control strategies for microgrids: An overview. IEEE Access, 2020. 8: p. 193412-193448. DOI: https://doi.org/10.1109/ACCESS.2020.3032378

Vasilakis, A., et al., The evolution of research in microgrids control. IEEE Open Access Journal of Power and Energy, 2020. 7: p. 331-343. DOI: https://doi.org/10.1109/OAJPE.2020.3030348

Eid, B.M., et al., Control methods and objectives for electronically coupled distributed energy resources in microgrids: A review. IEEE systems journal, 2014. 10(2): p. 446-458. DOI: https://doi.org/10.1109/JSYST.2013.2296075

Wang, X., et al., A review of power electronics based microgrids. International Journal of Power Electronics, 2012. 12(1): p. 181-192. DOI: https://doi.org/10.6113/JPE.2012.12.1.181

Uzair, M., et al., Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods. Renewable and Sustainable Energy Reviews, 2023. 178: p. 113228. DOI: https://doi.org/10.1016/j.rser.2023.113228

Correa, J., et al. A single phase high frequency AC microgrid with an unified power quality conditioner. in 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003. 2003. IEEE.

Chandak, S. and P.K. Rout, The implementation framework of a microgrid: A review. International Journal of Energy Research, 2021. 45(3): p. 3523-3547. DOI: https://doi.org/10.1002/er.6064

Hossain, M.A., et al., Overview of AC microgrid controls with inverter-interfaced generations. Energies, 2017. 10(9): p. 1300. DOI: https://doi.org/10.3390/en10091300

Chandak, S., P. Bhowmik, and P.K. Rout, Robust power balancing scheme for the grid‐forming microgrid. IET Renewable Power Generation, 2020. 14(1): p. 154-163. DOI: https://doi.org/10.1049/iet-rpg.2019.0905

Aasgard, E., et al., 2014 Index IEEE Transactions on Power Systems Vol. 29. IEEE Transactions on Power Systems, 2014. 29(6): p. 3127. DOI: https://doi.org/10.1109/TPWRS.2014.2364932

Cheng, P., et al., Overview of resilient traction power supply systems in railways with interconnected microgrid. CSEE Journal of Power and Energy Systems, 2020. 7(5): p. 1122-1132.

Sangoleye, F., et al., Networked Microgrid Cybersecurity Architecture Design Guide-A New Jersey TRANSITGRID Use Case. 2022, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). DOI: https://doi.org/10.2172/1900087

Ciezki, J.G. and R.W. Ashton, Selection and stability issues associated with a navy shipboard DC zonal electric distribution system. IEEE Transactions on power delivery, 2000. 15(2): p. 665-669. DOI: https://doi.org/10.1109/61.853002

Elsayed, A.T., A.A. Mohamed, and O.A. Mohammed, DC microgrids and distribution systems: An overview. Electric power systems research, 2015. 119: p. 407-417. DOI: https://doi.org/10.1016/j.epsr.2014.10.017

Pires, V.F., A. Pires, and A. Cordeiro, DC Microgrids: Benefits, Architectures, Perspectives and Challenges. Energies, 2023. 16(3): p. 1217. DOI: https://doi.org/10.3390/en16031217

Wang, C., et al., Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system. Energy, 2016. 97: p. 90-104. DOI: https://doi.org/10.1016/j.energy.2015.12.099

Jayachandran, M. and G. Ravi, Design and optimization of hybrid micro-grid system. Energy Procedia, 2017. 117: p. 95-103. DOI: https://doi.org/10.1016/j.egypro.2017.05.111

Zhu, X., et al., Past, today and future development of micro-grids in China. Renewable and Sustainable Energy Reviews, 2015. 42: p. 1453-1463. DOI: https://doi.org/10.1016/j.rser.2014.11.032

Justo, J.J., et al., AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and sustainable energy reviews, 2013. 24: p. 387-405. DOI: https://doi.org/10.1016/j.rser.2013.03.067

Patrao, I., et al., Microgrid architectures for low voltage distributed generation. Renewable and Sustainable Energy Reviews, 2015. 43: p. 415-424. DOI: https://doi.org/10.1016/j.rser.2014.11.054

Che, L. and M. Shahidehpour, DC microgrids: Economic operation and enhancement of resilience by hierarchical control. IEEE Transactions on Smart Grid, 2014. 5(5): p. 2517-2526. DOI: https://doi.org/10.1109/TSG.2014.2344024

Planas, E., et al., AC and DC technology in microgrids: A review. Renewable and Sustainable Energy Reviews, 2015. 43: p. 726-749. DOI: https://doi.org/10.1016/j.rser.2014.11.067

Tavakkoli, M.A., A. Radan, and H. Hassibi, Simulation and analysis of a compact electronic infrastructure for DC micro-grid: necessity and challenges. Smart Grid and Renewable Energy, 2012. 3(02): p. 73. DOI: https://doi.org/10.4236/sgre.2012.32011

Kakigano, H., Y. Miura, and T. Ise, Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE transactions on power electronics, 2010. 25(12): p. 3066-3075. DOI: https://doi.org/10.1109/TPEL.2010.2077682

Ding, G., et al., Control of hybrid AC/DC microgrid under islanding operational conditions. Journal of Modern Power Systems and Clean Energy, 2014. 2(3): p. 223-232. DOI: https://doi.org/10.1007/s40565-014-0065-z

Unamuno, E. and J.A. Barrena, Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renewable and Sustainable Energy Reviews, 2015. 52: p. 1251-1259. DOI: https://doi.org/10.1016/j.rser.2015.07.194

Shahgholian, G., A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems, 2021. 31(6): p. e12885. DOI: https://doi.org/10.1002/2050-7038.12885

Singh, N., et al., Routing based multi-agent system for network reliability in the smart microgrid. Sensors, 2020. 20(10): p. 2992. DOI: https://doi.org/10.3390/s20102992

Hu, J., et al., An overview on analysis and control of micro-grid system. International Journal of Control and Automation, 2015. 8(6): p. 65-76. DOI: https://doi.org/10.14257/ijca.2015.8.6.08

Kandari, R., N. Neeraj, and A. Micallef, Review on recent strategies for integrating energy storage systems in microgrids. Energies, 2022. 16(1): p. 317. DOI: https://doi.org/10.3390/en16010317

Mogaka, L.O., G.N. Nyakoe, and M.J. Saulo, Islanded and Grid-Connected Control in a Microgrid with Wind-PV Hybrid. International Journal of Applied Engineering Research, 2020. 15(4): p. 352-357.

Chen, W. and T. Li, Distributed economic dispatch for energy internet based on multiagent consensus control. IEEE Transactions on automatic control, 2020. 66(1): p. 137-152. DOI: https://doi.org/10.1109/TAC.2020.2979749

Adams, C., Home area network technologies. BT Technology Journal, 2002. 20(2): p. 53-72. DOI: https://doi.org/10.1023/A:1015640322106

Wyle, M. A wide area network information filter. in Proceedings First International Conference on Artificial Intelligence Applications on Wall Street. 1991. IEEE Computer Society.

Zohourian, A., et al., IoT Zigbee device security: A comprehensive review. Internet of Things, 2023: p. 100791. DOI: https://doi.org/10.1016/j.iot.2023.100791

Taghizad-Tavana, K., et al., An Overview of the Architecture of Home Energy Management System as Microgrids, Automation Systems, Communication Protocols, Security, and Cyber Challenges. Sustainability, 2022. 14(23): p. 15938. DOI: https://doi.org/10.3390/su142315938

Llaria, A., et al., Application of wireless sensor and actuator networks to achieve intelligent microgrids: A promising approach towards a global smart grid deployment. Applied Sciences, 2016. 6(3): p. 61. DOI: https://doi.org/10.3390/app6030061

Saleh, M., et al., Impact of information and communication technology limitations on microgrid operation. Energies, 2019. 12(15): p. 2926. DOI: https://doi.org/10.3390/en12152926

Pudjianto, D., C. Ramsay, and G. Strbac, Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008. 222(7): p. 731-741. DOI: https://doi.org/10.1243/09576509JPE556

Trivedi, R. and S. Khadem, Implementation of artificial intelligence techniques in microgrid control environment: Current progress and future scopes. Energy and AI, 2022. 8: p. 100147. DOI: https://doi.org/10.1016/j.egyai.2022.100147

Thirunavukkarasu, G.S., et al., Role of optimization techniques in microgrid energy management systems—A review. Energy Strategy Reviews, 2022. 43: p. 100899. DOI: https://doi.org/10.1016/j.esr.2022.100899

https://www.startus-insights.com/innovators-guide/microgrid-trends/.

Jiayi, H., J. Chuanwen, and X. Rong, A review on distributed energy resources and MicroGrid. Renewable and Sustainable Energy Reviews, 2008. 12(9): p. 2472-2483. DOI: https://doi.org/10.1016/j.rser.2007.06.004

Misak, S. and L. Prokop. Off-grid power systems. in 2010 9th International conference on environment and electrical engineering. 2010. IEEE. DOI: https://doi.org/10.1109/EEEIC.2010.5490003

Downloads

Published

08-01-2024

How to Cite

1.
Wu Y, Cui J, Liu C. State-of-the-art review on energy management systems, challenges and top trends of renewable energy based microgrids. EAI Endorsed Trans Energy Web [Internet]. 2024 Jan. 8 [cited 2025 Jan. 17];10. Available from: https://publications.eai.eu/index.php/ew/article/view/4124