Accuracy Assessment of different classifiers for Sustainable Development in Landuse and Landcover mapping using Sentinel SAR and Landsat-8 data


  • K. Kanmani Department of Civil Engineering, School of Infrastructure, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai
  • Vasanthi Padmanabhan Department of Civil Engineering, School of Infrastructure, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai
  • P. Pari DRA Consultants Limited, Chennai



Synthetic Aperture Radar (SAR), Random Forest Classifier, Maximum Likelihood Classifier, Minimum Distance to Mean Classifier and KDTree KNN Classifier


Sentinel satellites make use of Synthetic Aperture Radar (SAR) which produces images with backscattered signals at fine spatial resolution from 10 m to 50 m. This study is mainly focused on evaluating and assessing the accuracy of various supervised classifiers like Random Forest classifier, Minimum Distance to mean classifier, KDTree KNN classifier, and Maximum Likelihood classifier for landuse / landcover mapping in Maduranthakam Taluk, Kancheepuram district, Tamilnadu, India. These classifiers are widely used for classifying the Sentinel SAR images. The SAR images were processed using speckle and terrain correction and converted to backscattered energy. The training datasets for the landcover classes, such as vegetation, waterbodies, settlement, and barren land, were collected from Google Earth images in high-resolution mode. These collected training datasets were given as input for the various classifiers during the classification. The obtained classified output results of various classifiers were analyzed and compared using the overall classification accuracy. The overall accuracy achieved by the Random Forest classifier for the polarization VV and VH was 92.86%, whereas the classified accuracy of various classifiers such as KDTree KNN, Minimum distance to mean, and Maximum Likelihood are found to be 81.68%, 83.17%, and 85.64% respectively. The random forest classifier yields a higher classification accuracy value due to its greater stability in allocating the pixels to the right landuse class. In order to compare and validate the results with sentinel data, the random classifier is applied with optical Landsat-8 satellite data. The classification accuracy obtained for Landsat-8 data is 84.61%. It is clearly proved that the random forest classifier with sentinel data gives the best classification accuracy results due to its high spatial resolution and spectral sensitivity. Thus accurate landuse and landcover mapping promote sustainable development by supporting decision-making at local, regional, and national levels.


Download data is not yet available.


N. Arveti, B. Etikala, and P. Dash, “Land Use/Land Cover Analysis Based on Various Comprehensive Geospatial Data Sets: A Case Study from Tirupati Area, South India,” Adv. Remote Sens., vol. 05, no. 02, pp. 73–82, 2016, doi: 10.4236/ars.2016.52006. DOI:

J. Cihlar, “Land cover mapping of large areas from satellites: status and research priorities”, Int. J. Remote Sensing, vol. 21, No. 6 & 7, pp 1093-1114, 2000. DOI:

L. Zhong, P. Gong, and G. S. Biging, “Phenology-based Crop Classification Algorithm and its Implications on Agricultural Water Use Assessments in California’s Central Valley,” Photogramm. Eng. Remote Sens., vol. 78, no. 8, pp. 799–813, Aug. 2012, doi: 10.14358/PERS.78.8.799. DOI:

S. Abdikan, A. Sekertekin, M. Ustunern, F. Balik Sanli, and R. Nasirzadehdizaji, “BACKSCATTER ANALYSIS USING MULTI-TEMPORAL SENTINEL-1 SAR DATA FOR CROP GROWTH OF MAIZE IN KONYA BASIN, TURKEY,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII–3, pp. 9–13, Apr. 2018, doi: 10.5194/isprs-archives-XLII-3-9-2018. DOI:

N. Joshi et al., “A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring,” Remote Sens., vol. 8, no. 1, p. 70, Jan. 2016, doi: 10.3390/rs8010070. DOI:

M. M. Rahman and J. T. S. Sumantyo, “Mapping tropical forest cover and deforestation using synthetic aperture radar (SAR) images,” Appl. Geomat., vol. 2, no. 3, pp. 113–121, Sep. 2010, doi: 10.1007/s12518-010-0026-9. DOI:

F. Lima Ramos Barbosa, R. Fontes Guimarães, O. Abílio de Carvalho Júnior, and R. Arnaldo Trancoso Gomes, “Classificação do uso e cobertura da terra utilizando imagens SAR/Sentinel 1 no Distrito Federal,” Soc. Nat., vol. 33, p. e55954, Feb. 2021, doi: 10.14393/SN-v33-2021-55954. DOI:

M. Iyyappan, S. S. Ramakrishnan, and K. S. Raju, “ASSESSMENT ON LANDUSE/COVER CLASSIFICATION USING SYNTHETIC APERTURE RADAR (SAR) POLARIMETRY DATA”, Int. J. of Earth Sciences and Engineering, Oct 2014, pp 1124-1128

X. Peng et al., “A Comparison of Random Forest Algorithm-Based Forest Extraction with GF-1 WFV, Landsat 8 and Sentinel-2 Images,” Remote Sens., vol. 14, no. 21, p. 5296, Oct. 2022, doi: 10.3390/rs14215296. DOI:

A. D. P. Pacheco, J. A. D. S. Junior, A. M. Ruiz-Armenteros, and R. F. F. Henriques, “Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery,” Remote Sens., vol. 13, no. 7, p. 1345, Apr. 2021, doi: 10.3390/rs13071345. DOI:

C. Hütt, W. Koppe, Y. Miao, and G. Bareth, “Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images,” Remote Sens., vol. 8, no. 8, p. 684, Aug. 2016, doi: 10.3390/rs8080684. DOI:

S. Dahhani, M. Raji, M. Hakdaoui, and R. Lhissou, “Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape,” Remote Sens., vol. 15, no. 1, p. 65, Dec. 2022, doi: 10.3390/rs15010065. DOI:

S. Abdikan, F. B. Sanli, M. Ustuner, and F. Calò, “LAND COVER MAPPING USING SENTINEL-1 SAR DATA,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLI-B7, pp. 757–761, Jun. 2016, doi: 10.5194/isprs-archives-XLI-B7-757-2016. DOI:

V. N. Mishra, P. Kumar, D. K. Gupta, and R. Prasad, “Classification of various land features using RISAT-1 dual polarimetric data,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL–8, pp. 833–837, Nov. 2014, doi: 10.5194/isprsarchives-XL-8-833-2014. DOI:

R. H. Topaloğlu, E. Sertel, and N. Musaoğlu, “ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER / USE MAPPING,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLI-B8, pp. 1055–1059, Jun. 2016, doi: 10.5194/isprsarchives-XLI-B8-1055-2016. DOI:

S. Paul and D. N. Kumar, “COMPARISON OF LANDSAT-8 AND SENTINEL-2 DATA FOR CLASSIFICATION OF RABI CROPS OVER KARNATAKA, INDIA,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-3/W6, pp. 579–584, Jul. 2019, doi: 10.5194/isprs-archives-XLII-3-W6-579-2019. DOI:

N. Nuthammachot and D. Stratoulias, “Use of SAR and Optical Satellite Data for Land Use and Land Cover Classification in the Songkhla Lake Basin, Thailand", International Journal of Applied Engineering Research, vol. 12, no. 24, 2017.

M. E. Hereher, A. M. Al-Shammari, and S. E. Abd Allah, “Land Cover Classification of Hail—Saudi Arabia Using Remote Sensing,” Int. J. Geosci., vol. 03, no. 02, pp. 349–356, 2012, doi: 10.4236/ijg.2012.32038. DOI:

K. Kanmani, V. P., P. Pari, and N. S. S. Ahamed, “Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data,” Civ. Eng. J., vol. 9, no. 6, pp. 1402–1411, Jun. 2023, doi: 10.28991/CEJ-2023-09-06-08. DOI:

J. N. Hansen, E. T. A. Mitchard, and S. King, “Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar,” Remote Sens., vol. 12, no. 11, p. 1899, Jun. 2020, doi: 10.3390/rs12111899. DOI:

M. Wang, J. Wang, L. Chen, and Z. Du, “Mapping paddy rice and rice phenology with Sentinel-1 SAR time series using a unified dynamic programming framework,” Open Geosci., vol. 14, no. 1, pp. 414–428, May 2022, doi: 10.1515/geo-2022-0369. DOI:

D. Dobrinić, D. Medak, and M. Gašparović, “INTEGRATION OF MULTITEMPORAL SENTINEL-1 AND SENTINEL-2 IMAGERY FOR LAND-COVER CLASSIFICATION USING MACHINE LEARNING METHODS,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLIII-B1-2020, pp. 91–98, Aug. 2020, doi: 10.5194/isprs-archives-XLIII-B1-2020-91-2020. DOI:

P. Kaushik and S. Jabin, “Surface Area Classification Using Sentinel-1 SAR Backscattering Coefficients,” Int. J. Eng. Trends Technol., vol. 69, no. 12, pp. 39–46, Dec. 2021, doi: 10.14445/22315381/IJETT-V69I12P206. DOI:

L. M. Hang, V. V. Truong, N. D. Duong, and T. A. Tuan, “Mapping land cover using multi-temporal sentinel-1a data: A case study in Hanoi,” VIETNAM J. EARTH Sci., vol. 39, no. 4, pp. 347–361, Sep. 2017, doi: 10.15625/0866-7187/39/4/10730. DOI:

L. Ghayour et al., “Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms,” Remote Sens., vol. 13, no. 7, p. 1349, Apr. 2021, doi: 10.3390/rs13071349. DOI:

A. Ahmad and S. Quegan, “Analysis of Maximum Likelihood Classification on Multispectral Data”, Applied Mathematical Sciences, vol. 6, 2012, pp 6425-6436.

S. Verma, S. Kumar, V. N. Mishra, and R. Raj, “Multifrequency Spaceborne Synthetic Aperture Radar Data for Backscatter-Based Characterization of Land Use and Land Cover,” Front. Earth Sci., vol. 10, p. 825255, Mar. 2022, doi: 10.3389/feart.2022.825255. DOI:

P. Thanh Noi and M. Kappas, “Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery,” Sensors, vol. 18, no. 2, p. 18, Dec. 2017, doi: 10.3390/s18010018. DOI:

S. S. Rwanga and J. M. Ndambuki, “Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS,” Int. J. Geosci., vol. 08, no. 04, pp. 611–622, 2017, doi: 10.4236/ijg.2017.84033. DOI:

D. Schulz, H. Yin, B. Tischbein, S. Verleysdonk, R. Adamou, and N. Kumar, “Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel,” ISPRS J. Photogramm. Remote Sens., vol. 178, pp. 97–111, Aug. 2021, doi: 10.1016/j.isprsjprs.2021.06.005. DOI:

M. Weigand, J. Staab, M. Wurm, and H. Taubenböck, “Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data,” Int. J. Appl. Earth Obs. Geoinformation, vol. 88, p. 102065, Jun. 2020, doi: 10.1016/j.jag.2020.102065. DOI:

M. Iyyappan and S. S. Ramakrishnan, “Enhancing land cover classification for multispectral images using hybrid polarimetry SAR data,” Int. J. Remote Sens., vol. 41, no. 17, pp. 6718–6754, Sep. 2020, doi: 10.1080/01431161.2020.1750730. DOI:

Gomathi.M, Geetha Priya.M, Krishnaveni. D, " Supervised classification for flood extent identification using sentinel-1 radar data", The 39th Asian Conference on Remote Sensing 2018, Oct. 2018, pp 3277-3284




How to Cite

Kanmani K, Padmanabhan V, Pari P. Accuracy Assessment of different classifiers for Sustainable Development in Landuse and Landcover mapping using Sentinel SAR and Landsat-8 data. EAI Endorsed Trans Energy Web [Internet]. 2023 Oct. 13 [cited 2024 Jun. 25];10. Available from: