Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing Applications

Authors

  • Jency Rubia J Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology image/svg+xml
  • Sherin Shibi C SRM Institute of Science and Technology image/svg+xml
  • Rosi A Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology image/svg+xml
  • Babitha Lincy R Sri Eshwar College of Engineering image/svg+xml
  • Ezhil E Nithila Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology image/svg+xml

DOI:

https://doi.org/10.4108/ew.4997

Keywords:

cryo-CMOS, quantum SOC, quantum processor, scalability, IC design, performance analysis

Abstract

Quantum computing is a fascinating and rapidly evolving field of technology that promises to revolutionize many areas of science, engineering, and society. The fundamental unit of quantum computing is the quantum bit that can exist in two or more states concurrently, as opposed to a classical bit that can only be either 0 or 1. Any subatomic element, including atoms, electrons, and photons, can be used to implement qubits. The chosen sub-atomic elements should have quantum mechanical properties. Most commonly, photons have been used to implement qubits. Qubits can be manipulated and read by applying external fields or pulses, such as lasers, magnets, or microwaves. Quantum computers are currently suffering from various complications such as size, operating temperature, coherence problems, entanglement, etc. The realization of quantum computing, a novel paradigm that uses quantum mechanical phenomena to do computations that are not possible with classical computers, is made possible, most crucially, by the need for a quantum processor and a quantum SOC. As a result, Cryo-CMOS technology can make it possible to integrate a Quantum system on a chip. Cryo-CMOS devices are electronic circuits that operate at cryogenic temperatures, usually below 77 K (−196 °C).

Downloads

Download data is not yet available.

References

Kondo Y, Mori R, Movassagh R. Quantum supremacy and hardness of estimating output probabilities of quantum circuits: Proceedings of IEEE 62nd Annual Symposium on Foundations of Computer Science; 2022. p. 1296-1307. DOI: https://doi.org/10.1109/FOCS52979.2021.00126

Yang, Chiribella, Hayashi. Communication Cost of Quantum Processes. IEEE Journal on Selected Areas in Information Theory. 2020; vol. 1: p. 387-400. DOI: https://doi.org/10.1109/JSAIT.2020.3016061

Kandala A, Mezzacapo K, Temme M, Takita M, Brink JM, Chow, Gambetta JM. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. In Nature. 2017; Vol 549: p. 242 -250. DOI: https://doi.org/10.1038/nature23879

Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA. Quantum supremacy using a programmable superconducting processor. Nature Journal. 2019; Vol 574: p. 505–510. DOI: https://doi.org/10.1038/s41586-019-1666-5

Monroe C, Meekho D, King B, Itano WM, Wineland DJ. Demonstration of a fundamental quantum logic gate. In Physical review letters.1995; Vol 75: p. 4714-4720. DOI: https://doi.org/10.1103/PhysRevLett.75.4714

Chuang L, Gershenfeld N, Kubinec MG, Leung DW. Bulk quantum computation with nuclear magnetic resonance: theory and experiment: Proceedings of the Royal Society of London. Series A Mathematical, Physical and Engineering Sciences. 1998; Vol 454: p. 447–467. DOI: https://doi.org/10.1098/rspa.1998.0170

Izumi S, Neergaard-Nielsen JS, Andersen UL. Tomography of a Feedback Measurement with Photon Detection: Proceddings of Lasers and Electro-Optics Europe & European Quantum Electronics Conference; 2021. p. 1-1. DOI: https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542297

Elzerman R, Hanson Van Beveren LW, Witkamp B, Vandersypen L, and Kouwenhoven LP. Single-shot read-out of an individual electron spin in a quantum dot. Nature Journal. 2004; Vol 430: p. 431–435. DOI: https://doi.org/10.1038/nature02693

Paz BC. Coupling control in the few-electron regime of quantum dot arrays using 2-metal gate levels in CMOS technology: Proceedings of IEEE 48th European Solid State Circuits Conference; 2022. p. 45-48. DOI: https://doi.org/10.1109/ESSCIRC55480.2022.9911381

Camenzind C, Geyer S, Fuhrer A, Warburton RJ, Zumbühl DM. A spin qubit in a fin field-effect transistor.Natural Electronics. 2021: p. 178-183. DOI: https://doi.org/10.1038/s41928-022-00722-0

Petit H, Eenink M, Russ W, Lawrie N. Universal quantum logic in hot silicon qubits. Nature Journal. 2020; Vol 580: p. 355–359. DOI: https://doi.org/10.1038/s41586-020-2170-7

Arute F, Arya K, Babbush R, Bacon D. Quantum supremacy using a programmable superconducting processor. Nature Journal. 2019; Vol 574: p. 505–510.

Vandersypen H. Bluhm H, Clarke J, Dzurak A. Interfacing spin qubits in quantum dots and donors —- hot, dense, and coherent. npj Quantum Information.2019; p. 34-42.

Homulle H, Visser S, Patra B. A reconfigurable cryogenic platform for the classical control of quantum processors. In: Review of Scientific Instruments. 2017; Vol 88: p. 045-103. DOI: https://doi.org/10.1063/1.4979611

Boaventura S. Cryogenic Characterization of a Superconductor Quantum-Based Microwave Reference Source for Communications and Quantum Information. IEEE Transactions on Applied Superconductivity. 2021; vol. 3: p. 1-9. DOI: https://doi.org/10.1109/TASC.2021.3117610

Staszewski RB, Homulle HAR, Patra B. Cryo-CMOS Circuits and Systems for Scalable Quantum Computing: Proceeding of International Solid-State Circuits Conference; 2017. p 1-10.

Muhonen JT. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking. Journal of Physics Condensed Matter. 2015; Vol 27: p. 154-205. DOI: https://doi.org/10.1088/0953-8984/27/15/154205

Chow JM, Gambetta JM, Magesan E, Abraham DW. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Journal of Natural Communication. 2014; Vol 5: p. 40-15. DOI: https://doi.org/10.1038/ncomms5015

Reilly DJ. Engineering the quantum-classical interface of solid-state qubits. npj Quantum Information. 2015; p. 150-168. DOI: https://doi.org/10.1038/npjqi.2015.11

Wang DH. Low-Temperature Deuterium Annealing for the Recovery of Ionizing Radiation-Induced Damage in MOSFET. IEEE Transactions on Device and Materials Reliability.2013; vol. 23: p. 297-301. DOI: https://doi.org/10.1109/TDMR.2023.3275947

Ding C, Ngo KD, Lu G. A Soft Magnetic Moldable Composite With Tri-Modal Size Distribution for Power Electronics Applications. IEEE Transactions on Magnetics.2021; vol. 57: p. 1-6. DOI: https://doi.org/10.1109/TMAG.2021.3053176

Fu X, Riesebos L, Lao L, Sebastiano F, Charbon E. A Heterogeneous Quantum Computer Architecture: Proceeding of ACM International Conference on computing frontiers; 2016. p 1-7. DOI: https://doi.org/10.1145/2903150.2906827

Charbon E, Sebastiano F, Patra B. Cryo-CMOS Circuits and Systems for Scalable Quantum Computing: Proceedings of International Solid-State Circuits Conference; 2017. p 1-8. DOI: https://doi.org/10.1145/3061639.3072948

Bertels K. Quantum Computer Architecture Toward Full-Stack Quantum Accelerators. IEEE Transactions on Quantum Engineering. 2020; vol. 1: p. 1-17. DOI: https://doi.org/10.1109/TQE.2020.2981074

Wu T and Guo J. A Multiscale Simulation Approach for Germanium-Hole-Based Quantum Processor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2023; vol. 42: p. 257-265. DOI: https://doi.org/10.1109/TCAD.2022.3166107

Martiel S, Ayral T, Allouche C. Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way. IEEE Transactions on Quantum Engineering. 2021. 2, p. 1-11. DOI: https://doi.org/10.1109/TQE.2021.3090207

Nirmala P, Asha V, Saju B, Murali SC. Comparative Analysis of Quantum Computing Algorithm: Proceddings of Advanced Computing and Communication Technologies for High Performance Applications; 2023. p. 1-7. DOI: https://doi.org/10.1109/ACCTHPA57160.2023.10083363

Wang DS. A comparative study of universal quantum computing models towards a physical unification. Quantum Engineering. 2021; Vol. 85: p 1-14. DOI: https://doi.org/10.1002/que2.85

Zeissler K. Controlling a superconducting quantum processor. Natural Electronics. 2023; Vol. 181: p 1-10. DOI: https://doi.org/10.1038/s41928-023-00948-6

He Y, Liu J, Zhao C. Control System of Superconducting Quantum Computers. Journal of Superconducting. 2023; Vol 35: p. 11–31. DOI: https://doi.org/10.1007/s10948-021-06104-5

Will Gilbert. On-demand electrical control of spin qubits. Nature Nanotechnology. 2023; p 1-15.

Patra B.: Cryo-CMOS Circuits and Systems for Quantum Computing Applications. IEEE Journal of Solid-State Circuits. 2018; vol. 53 (1): p. 309-321. DOI: https://doi.org/10.1109/JSSC.2017.2737549

Rietsche R, Dremel C, Bosch S. Quantum computing. Electron Markets.2022; Vol. 32: p. 2525–2536. DOI: https://doi.org/10.1007/s12525-022-00570-y

Kanamori, Yoshito, Yoo, Seong-Moo. Quantum Computing: Principles and Applications. Journal of International Technology and Information Management. 2020; Vol. 29: p. 1-8. DOI: https://doi.org/10.58729/1941-6679.1410

Lao L, van Someren H, Ashraf I, Almudever CG. Timing and Resource-Aware Mapping of Quantum Circuits to Superconducting Processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2022; vol. 41: p. 359-371. DOI: https://doi.org/10.1109/TCAD.2021.3057583

Downloads

Published

01-02-2024

How to Cite

1.
J JR, C SS, A R, R BL, Nithila EE. Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing Applications. EAI Endorsed Trans Energy Web [Internet]. 2024 Feb. 1 [cited 2025 Jan. 22];11. Available from: https://publications.eai.eu/index.php/ew/article/view/4997