Analysis of Energy International E-commerce Innovation Strategy Based on Global Value Chain


  • Qing Bai North University of China



INTRODUCTION: With the drive of globalization and digitalization, the global energy industry is undergoing a brand new transformation. Energy international e-commerce is an emerging paradigm that continues to grow within the global value chain framework, bringing significant changes and opportunities to the energy sector.

OBJECTIVES: This research examines the role of international e-commerce in advancing the energy industry's growth, maximizing the distribution of resources worldwide, and boosting market competitiveness. It does this by analyzing the innovation strategy of the sector based on the global value chain.

METHODS: The basic concepts and characteristics of global value chain theory and energy international e-commerce are analyzed, and then the innovation strategies in technological innovation, international cooperation, supply chain optimization, and data-driven are explored in depth, and empirical analyses of these strategies are conducted through case studies.

RESULTS: It is found that technological innovation not only promotes the development of international energy e-commerce but also gives rise to new business models; international cooperation and supply chain optimization effectively optimize the global resource allocation and market layout; and data-driven market expansion strategy improves the market competitiveness of enterprises. The case study results further validate the effectiveness and practicality of these strategies. CONCLUSION: Energy international e-commerce innovation strategies based on GVCs play an essential role in promoting the transformation and upgrading of the energy industry, optimizing resource allocation efficiency, and enhancing enterprises' market competitiveness.



Download data is not yet available.




How to Cite

Bai Q. Analysis of Energy International E-commerce Innovation Strategy Based on Global Value Chain. EAI Endorsed Trans Energy Web [Internet]. 2024 Mar. 18 [cited 2024 Apr. 21];11. Available from: