Seidel Laplacian Energy of Fuzzy graphs

Authors

  • K Sivaranjani Sri Eshwar College of Engineering image/svg+xml
  • O V Shanmuga Sundaram Sree Saraswathi Thyagaraja College
  • K Akalyadevi Avinashilingam University

DOI:

https://doi.org/10.4108/ew.5297

Keywords:

Graph, Energy of a Graph, Seidel Laplacian Energy, Fuzzy Set, Fuzzy Graph

Abstract

The energy of a graph is related to its spectrum, which is equal to the total of the latent values of the pertinent adjacency matrix. In this research work, we proposed some of the features and the energy of the Seidel Laplacian of a fuzzy graph. Also, the lower and upper bounds for the energy of the Seidel Laplacian of a fuzzy graph were studied with suitable illustrative examples.

Downloads

Download data is not yet available.

References

Harary F. Graph theory. Massachusetts: Addison Wesley; 1969.

Zimmermann HJ. Fuzzy set theory and its applications. Springer Science + Business media; LLC: 2001.

Pusphalatha N. Devi BP. Sharma V. Alkhayyat AA. Comprehensive Study of Artificial Intelligence-based Optimal Potential Point Tracking for Solar Power Voltaic Frameworks. Proceedings of 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET); London, 2023. pp. 1-5.

Pushpalatha N. Jabeera S. Hemalatha N. Sharma V. Balusamy B. Yuvaraj R. A Succinct Summary of the Solar Maximum Power Point Tuining Utilizing a Diverse Optimizing Compiler; Proceedings of 5th International Conference on Contemporary Computing and Informatics; Noida, 2022. pp. 1177-1181.

Aruchamy P. Gnanaselvi S. Sowndarya D. Naveenkumar P. An artificial intelligence approach for energy-aware intrusion detection and secure routing in internet of things-enabled wireless sensor networks. Concurrency and Computation Practice and Experience, 2023; vol. 35: pp. 1-31.

Gutman I. Degree-Based Topological Indices. Croatica Chemica Acta. 2013; Vol. 86: pp. 351–361.

Hemalatha R. Somasundaram K. Sombor index of edge corona product of some classes of graphs. South East Asian Journal of Mathematics and Mathematical Science. 2022; Vol. 18: pp. 307-316.

Kavitha S. Jayalalitha G. Gaussian Graceful Labeling. European Chemical Bulletin. 2023; Vol. 12(Special issue 4): pp. 8438-8456.

Akalyadevi K. Sudamani Ramaswamy A R. Operation on Bipolar spherical fuzzy graph. Waffen-und kostumkunde journal. 2020; Vol. 11: pp. 78-88.

Akalyadevi K. Antony Crispin Sweety C. Sudamani Ramasamy A R. Bipolar spherical neutrosophic cubic graph and its application. Quadruple Neutrosophic Theory and applications. 2020; Vol.1: pp. 266-307.

Akalyadevi K. Sudamani Ramasamy A R. Bipolar spherical fuzzy graph. International journal of Creative Research Thoughts. 2020; Vol. 8(issue number 6): pp. 4317-4327.

Akalyadevi K. Sudha MS. Preethi Sowndarya K. Application of spherical fuzzy graph in traffic. AIP Conference Proceedings; 2021. pp. 1-16.

Gutman I. The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz, 103. 1988. pp. 1–22.

Li X. Shi Y. Gutman I. Graph Energy. Springer; 2012.

Gutman I Zhou B. Laplacian energy of a graph. Linear Algebra and its Applications. 2006; Vol. 414: pp. 29- 37.

Oboudi M R. Energy and Seidel Energy of Graphs. MATCH Communications in Mathematical and in Computer Chemistry. 2016; Vol. 75: pp. 291-303.

Ramane HS. Jummannaver RB. Gutman I. Seidel Laplacian Energy of Graphs. International Journal of Applied Graph Theory. 2017; Vol. 1: pp. 74 – 82.

Sunitha MS. Mathew S. Fuzzy Graph Theory. A Survey. 2013; Vol. 4(issue number 1): pp. 92-110.

Pal M. Samanta S. Ghorai G. Modern Trends in Fuzzy Graph Theory. Springer; 2020.

Narayanan A. Mathew. S. Energy of a fuzzy graph. Annals of Fuzzy Mathematics and Informatics. 2013; Vol. 6: pp. 455–465.

Rahimi SS. Fayazi F. Laplacian Energy of a Fuzzy Graph. Iranian Journal of Mathematical Chemistry. 2014; Vol. 5: pp.1− 10.

Downloads

Published

04-03-2024

How to Cite

1.
Seidel Laplacian Energy of Fuzzy graphs. EAI Endorsed Trans Energy Web [Internet]. 2024 Mar. 4 [cited 2025 Nov. 1];11. Available from: https://publications.eai.eu/index.php/ew/article/view/5297