Prognostication of Weather Patterns using Meteorological Data and ML Techniques

Authors

DOI:

https://doi.org/10.4108/ew.5648

Keywords:

Meteorological Data, Precipitation Prediction, Radial Basis Function Neural Network, Classifier Random Forest, Gradient Boosting

Abstract

In the field of modern weather prediction, the accurate classification is essential, impacting critical sectors such as agriculture, aviation, and water resource management. This research presents a weather forecasting model employing two influential classifiers random forest and technique based on gradient boosting, both implemented using the Scikit-learn library. Evaluation is based on key metrics including F1 score, accuracy, recall, and precision, with Gradient Boosting emerging as the superior choice for precipitation prediction. The study examines the performance of Random Forest Regression, Gradient Boosting Regression, and Radial Basis Function Neural Network in forecasting precipitation, drawing on prior research that demonstrated the superiority of the Random Forest algorithm in terms of accuracy and speed. Ensemble methods, particularly the Voting Classifier, a fusion of Random Forest and Gradient Boosting, outperform individual models, offering a promising avenue for advancing weather classification.

Downloads

References

Hanoon, M. S., Ahmed, A. N., Zaini, N., Razzaq, A., Kumar, P., Sherif, M., Sefelnasr, A., & El-Shafie, A. Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia. Scientific Reports,2021, 11(1). https://doi.org/10.1038/s41598-021-96872-w DOI: https://doi.org/10.1038/s41598-021-96872-w

Wang, Y., Pei, L., & Wang, J., Precipitation prediction in several Chinese regions using machine learning methods. International Journal of Dynamics and Control. 2023, https://doi.org/10.1007/s40435-023-01250- DOI: https://doi.org/10.1007/s40435-023-01250-1

Rudrappa, G., Machine Learning Models Applied for Rainfall Prediction. Revista Gestão Inovação E Tecnologias, 2021, 11(3), 179–187. https://doi.org/10.47059/revistageintec.v11i3.1926 DOI: https://doi.org/10.47059/revistageintec.v11i3.1926

Liyew, C.M., Melese, H.A. Machine learning techniques to predict daily rainfall amount. J Big Data 8, 153, 2021, https://doi.org/10.1186/s40537-021-00545-4 DOI: https://doi.org/10.1186/s40537-021-00545-4

M. Noor, I. M., Prasetyowati, S. S., & Sibaroni, Y., Prediction Map of Rainfall Classification Using Random Forest and Inverse Distance Weighted (IDW). Building of Informatics, Technology and Science, 2023 (BITS), 4(2). https://doi.org/10.47065/bits.v4i2.1978 DOI: https://doi.org/10.47065/bits.v4i2.1978

Fayaz, S. A., Kaul, S., Zaman, M., & Butt, M. A. An Adaptive Gradient Boosting Model for the Prediction of Rainfall Using ID3 as a Base Estimator. Revue D’Intelligence Artificielle, 2022 36(2), 241–250. https://doi.org/10.18280/ria.360208 DOI: https://doi.org/10.18280/ria.360208

Kundu, S., Biswas, S. K., Tripathi, D., Karmakar, R., Majumdar, S., & Mandal, S.,. A review on rainfall forecasting using ensemble learning techniques. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 2023, 6, 100296. https://doi.org/10.1016/j.prime.2023.100296 DOI: https://doi.org/10.1016/j.prime.2023.100296

Appiah-Badu, N. K. A., Missah, Y. M., Amekudzi, L. K., Ussiph, N., Frimpong, T., & Ahene, E., 2022, Rainfall Prediction Using Machine Learning Algorithms for the Various Ecological Zones of Ghana. IEEE Access, 10, 5069–5082. https://doi.org/10.1109/access.2021.3139312 DOI: https://doi.org/10.1109/ACCESS.2021.3139312

Draper, C. S., Accounting for land model error in numerical weather prediction ensemble systems: toward ensemble-based coupled land/atmosphere data assimilation. Journal of Hydrometeorology,2022, https://doi.org/10.1175/jhm-d-21-0016.1 DOI: https://doi.org/10.1175/JHM-D-21-0016.1

Song, C., & Chen, X., Performance Comparison of Machine Learning Models for Annual Precipitation Prediction Using Different Decomposition Methods. Remote Sensing, 2021, 13(5), 1018. https://doi.org/10.3390/rs13051018 DOI: https://doi.org/10.3390/rs13051018

Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A., Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning With Applications, 2022 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204 DOI: https://doi.org/10.1016/j.mlwa.2021.100204

Dhamodaran, S., KipsonRoy, G., Kishor, A., Refonaa, J., & JanyShabu, S. L., A Comparative Analysis of Rainfall Prediction Using Support Vector Machine and Random Forest. Journal of Computational and Theoretical Nanoscience, 2020 17(8), 3539–3542. https://doi.org/10.1166/jctn.2020.9227 DOI: https://doi.org/10.1166/jctn.2020.9227

Hsu, K. W. On Adjustment Functions for Weight-Adjusted Voting-Based Ensembles of Classifiers. Journal of Computers, 2014, 9(7). https://doi.org/10.4304/jcp.9.7.1547-1552 DOI: https://doi.org/10.4304/jcp.9.7.1547-1552

Chai, S. S., Wong, W. K., & Goh, K. L., Backpropagation Vs. Radial Basis Function Neural Model: Rainfall Intensity Classification For Flood Prediction Using Meteorology Data. Journal of Computer Science, 2016, 12(4), 191–200. DOI: https://doi.org/10.3844/jcssp.2016.191.200

Gu, J., Liu, S., Zhou, Z., Chalov, S. R., & Zhuang, Q., A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China. Water, 2022, 14(3), 492. https://doi.org/10.3390/w14030492 DOI: https://doi.org/10.3390/w14030492

Ojo, O. S., & Ogunjo, S. T., Machine learning models for prediction of rainfall over Nigeria. Scientific African,2022, 16, e01246. https://doi.org/10.1016/j.sciaf.2022.e01246 DOI: https://doi.org/10.1016/j.sciaf.2022.e01246

Balamurugan, M. S., & Manojkumar, R. , Study of short-term rain forecasting using machine learning based approach. Wireless Networks,2019 27(8), 5429–5434. https://doi.org/10.1007/s11276-019-02168-3 DOI: https://doi.org/10.1007/s11276-019-02168-3

Ji, Y., Zhi, X., Ji, L., & Peng, T., Conditional Ensemble Model Output Statistics for Postprocessing of Ensemble Precipitation Forecasting. Weather and Forecasting, 2023, 38(9), 1707–1718. https://doi.org/10.1175/waf-d-22-0190.1 DOI: https://doi.org/10.1175/WAF-D-22-0190.1

Matricciani, E.. Prediction of rain attenuation in slant paths in equatorial areas: application of two layer rain model. Electronics Letters,1993, 29(1), 72–73. https://doi.org/10.1049/el:19930047 DOI: https://doi.org/10.1049/el:19930047

Salmayenti, R., Hidayat, R., & Pramudia, A. Rainfall Prediction Using Artificial Neural Network. Agromet, 2017. 31(1), 11. https://doi.org/10.29244/j.agromet.31.1.11-21 DOI: https://doi.org/10.29244/j.agromet.31.1.11-21

Downloads

Published

05-04-2024

How to Cite

1.
Mathur S, Kumar S, Choudhury T. Prognostication of Weather Patterns using Meteorological Data and ML Techniques. EAI Endorsed Trans Energy Web [Internet]. 2024 Apr. 5 [cited 2025 Jan. 9];11. Available from: https://publications.eai.eu/index.php/ew/article/view/5648
Crossref
2
Scopus
0
Amandeep Singh (2024)
Innovating Sustainability Through Digital Circular Economy. Advances in Finance, Accounting, and Economics, 47.
10.4018/979-8-3373-0578-3.ch003
Swati Gupta, Archana Dwivedi, Harish Kumar (2024)
Innovating Sustainability Through Digital Circular Economy. Advances in Finance, Accounting, and Economics, 373.
10.4018/979-8-3373-0578-3.ch017