Prognostication of Weather Patterns using Meteorological Data and ML Techniques
DOI:
https://doi.org/10.4108/ew.5648Keywords:
Meteorological Data, Precipitation Prediction, Radial Basis Function Neural Network, Classifier Random Forest, Gradient BoostingAbstract
In the field of modern weather prediction, the accurate classification is essential, impacting critical sectors such as agriculture, aviation, and water resource management. This research presents a weather forecasting model employing two influential classifiers random forest and technique based on gradient boosting, both implemented using the Scikit-learn library. Evaluation is based on key metrics including F1 score, accuracy, recall, and precision, with Gradient Boosting emerging as the superior choice for precipitation prediction. The study examines the performance of Random Forest Regression, Gradient Boosting Regression, and Radial Basis Function Neural Network in forecasting precipitation, drawing on prior research that demonstrated the superiority of the Random Forest algorithm in terms of accuracy and speed. Ensemble methods, particularly the Voting Classifier, a fusion of Random Forest and Gradient Boosting, outperform individual models, offering a promising avenue for advancing weather classification.
Downloads
References
Hanoon, M. S., Ahmed, A. N., Zaini, N., Razzaq, A., Kumar, P., Sherif, M., Sefelnasr, A., & El-Shafie, A. Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia. Scientific Reports,2021, 11(1). https://doi.org/10.1038/s41598-021-96872-w DOI: https://doi.org/10.1038/s41598-021-96872-w
Wang, Y., Pei, L., & Wang, J., Precipitation prediction in several Chinese regions using machine learning methods. International Journal of Dynamics and Control. 2023, https://doi.org/10.1007/s40435-023-01250- DOI: https://doi.org/10.1007/s40435-023-01250-1
Rudrappa, G., Machine Learning Models Applied for Rainfall Prediction. Revista Gestão Inovação E Tecnologias, 2021, 11(3), 179–187. https://doi.org/10.47059/revistageintec.v11i3.1926 DOI: https://doi.org/10.47059/revistageintec.v11i3.1926
Liyew, C.M., Melese, H.A. Machine learning techniques to predict daily rainfall amount. J Big Data 8, 153, 2021, https://doi.org/10.1186/s40537-021-00545-4 DOI: https://doi.org/10.1186/s40537-021-00545-4
M. Noor, I. M., Prasetyowati, S. S., & Sibaroni, Y., Prediction Map of Rainfall Classification Using Random Forest and Inverse Distance Weighted (IDW). Building of Informatics, Technology and Science, 2023 (BITS), 4(2). https://doi.org/10.47065/bits.v4i2.1978 DOI: https://doi.org/10.47065/bits.v4i2.1978
Fayaz, S. A., Kaul, S., Zaman, M., & Butt, M. A. An Adaptive Gradient Boosting Model for the Prediction of Rainfall Using ID3 as a Base Estimator. Revue D’Intelligence Artificielle, 2022 36(2), 241–250. https://doi.org/10.18280/ria.360208 DOI: https://doi.org/10.18280/ria.360208
Kundu, S., Biswas, S. K., Tripathi, D., Karmakar, R., Majumdar, S., & Mandal, S.,. A review on rainfall forecasting using ensemble learning techniques. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 2023, 6, 100296. https://doi.org/10.1016/j.prime.2023.100296 DOI: https://doi.org/10.1016/j.prime.2023.100296
Appiah-Badu, N. K. A., Missah, Y. M., Amekudzi, L. K., Ussiph, N., Frimpong, T., & Ahene, E., 2022, Rainfall Prediction Using Machine Learning Algorithms for the Various Ecological Zones of Ghana. IEEE Access, 10, 5069–5082. https://doi.org/10.1109/access.2021.3139312 DOI: https://doi.org/10.1109/ACCESS.2021.3139312
Draper, C. S., Accounting for land model error in numerical weather prediction ensemble systems: toward ensemble-based coupled land/atmosphere data assimilation. Journal of Hydrometeorology,2022, https://doi.org/10.1175/jhm-d-21-0016.1 DOI: https://doi.org/10.1175/JHM-D-21-0016.1
Song, C., & Chen, X., Performance Comparison of Machine Learning Models for Annual Precipitation Prediction Using Different Decomposition Methods. Remote Sensing, 2021, 13(5), 1018. https://doi.org/10.3390/rs13051018 DOI: https://doi.org/10.3390/rs13051018
Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi, L. A., Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Machine Learning With Applications, 2022 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204 DOI: https://doi.org/10.1016/j.mlwa.2021.100204
Dhamodaran, S., KipsonRoy, G., Kishor, A., Refonaa, J., & JanyShabu, S. L., A Comparative Analysis of Rainfall Prediction Using Support Vector Machine and Random Forest. Journal of Computational and Theoretical Nanoscience, 2020 17(8), 3539–3542. https://doi.org/10.1166/jctn.2020.9227 DOI: https://doi.org/10.1166/jctn.2020.9227
Hsu, K. W. On Adjustment Functions for Weight-Adjusted Voting-Based Ensembles of Classifiers. Journal of Computers, 2014, 9(7). https://doi.org/10.4304/jcp.9.7.1547-1552 DOI: https://doi.org/10.4304/jcp.9.7.1547-1552
Chai, S. S., Wong, W. K., & Goh, K. L., Backpropagation Vs. Radial Basis Function Neural Model: Rainfall Intensity Classification For Flood Prediction Using Meteorology Data. Journal of Computer Science, 2016, 12(4), 191–200. DOI: https://doi.org/10.3844/jcssp.2016.191.200
Gu, J., Liu, S., Zhou, Z., Chalov, S. R., & Zhuang, Q., A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China. Water, 2022, 14(3), 492. https://doi.org/10.3390/w14030492 DOI: https://doi.org/10.3390/w14030492
Ojo, O. S., & Ogunjo, S. T., Machine learning models for prediction of rainfall over Nigeria. Scientific African,2022, 16, e01246. https://doi.org/10.1016/j.sciaf.2022.e01246 DOI: https://doi.org/10.1016/j.sciaf.2022.e01246
Balamurugan, M. S., & Manojkumar, R. , Study of short-term rain forecasting using machine learning based approach. Wireless Networks,2019 27(8), 5429–5434. https://doi.org/10.1007/s11276-019-02168-3 DOI: https://doi.org/10.1007/s11276-019-02168-3
Ji, Y., Zhi, X., Ji, L., & Peng, T., Conditional Ensemble Model Output Statistics for Postprocessing of Ensemble Precipitation Forecasting. Weather and Forecasting, 2023, 38(9), 1707–1718. https://doi.org/10.1175/waf-d-22-0190.1 DOI: https://doi.org/10.1175/WAF-D-22-0190.1
Matricciani, E.. Prediction of rain attenuation in slant paths in equatorial areas: application of two layer rain model. Electronics Letters,1993, 29(1), 72–73. https://doi.org/10.1049/el:19930047 DOI: https://doi.org/10.1049/el:19930047
Salmayenti, R., Hidayat, R., & Pramudia, A. Rainfall Prediction Using Artificial Neural Network. Agromet, 2017. 31(1), 11. https://doi.org/10.29244/j.agromet.31.1.11-21 DOI: https://doi.org/10.29244/j.agromet.31.1.11-21
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
10.4018/979-8-3373-0578-3.ch003
10.4018/979-8-3373-0578-3.ch017