Research on Land-Based Wind/Solar Power Station Site Deformation Monitoring Based on SBAS-InSAR Technology
DOI:
https://doi.org/10.4108/ew.5656Keywords:
LAnd-based Wind/Solar Power Station, Deformation Monitoring, Time Series, SBAS-InSARAbstract
INTRODUCTION: In recent years, China has been building extensive wind/solar power stations. During the construction and operation of land-based wind/solar power stations, deformation monitoring is an important method to investigate the station stability.
OBJECTIVES: Therefore, this study uses Sentinel-1 data and time-series InSAR technology to monitor the deformation of photovoltaic and wind power stations in Qingyuan County.
METHODS: InSAR technology obtains deformation rate maps in the radar line of sight (LOS) direction for a wide area around the power station sites. Since wind/solar power stations are mainly located in natural environments with relatively dense vegetation coverage, this paper proposes a SBAS-InSAR method integrated with spatiotemporal filtering to accurately extract the time series deformation over a large area. Based on the statistical characteristic difference between the deformation and the atmospheric delay, spatiotemporal filterings are applied to remove the atmospheric delay from the InSAR derived deformation results.
RESULTS: The experimental results show that spatiotemporal filtering is an effective and fast method to remove atmospheric delay.
CONCLUSION: The integration of BSAS-InSAR with spatiotemporal filtering has great potential applications in the deformation monitoring of land-based wind/solar power station sites, which is critical for the construction and operation of land-based wind/solar power stations.
Downloads
References
Wang, Y., Chao, Q., Zhao, L., & Chang, R.. Assessment of wind and photovoltaic power potential in China. Carbon Neutrality. 2022; 1(1), 15. DOI: https://doi.org/10.1007/s43979-022-00020-w
Lin, C. K., Dai, C. Y., & Wu, J. C. Analysis of structural deformation and deformation-induced solar radiation misalignment in a tracking photovoltaic system. Renewable energy. 2013; 59, 65-74. DOI: https://doi.org/10.1016/j.renene.2013.03.031
Abdollahi, R. Impact of wind on strength and deformation of solar photovoltaic modules. Environmental Science and Pollution Research. 2021; 28(17), 21589-21598. DOI: https://doi.org/10.1007/s11356-020-12111-1
Raucoules, D., et al., Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. Journal of Applied Geophysics, 2009. 68(3): p. 335-347. DOI: https://doi.org/10.1016/j.jappgeo.2009.02.003
Cigna, F., Osmanoglu, B., Cabral-Cano, E.. Dixon, T.H, Avila-Olivera, J.A., Garduno-Monroy, V.H., DeMets, C., Wdowinski, S. Monitoring land subsidence and its induced geological hazard with synthetic aperture radar interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012;117,146-161. DOI: https://doi.org/10.1016/j.rse.2011.09.005
Costantini, M., Ferretti, A., Minati, F., Falco, S., Trillo, F., Colombo, D., Novali, F..Malvarosa, F., Mammone, C., Vecchioli, F., Rucci, A., Fumagalli, A., Allievi, J..Ciminelli. M.G.. Costabile. S. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-Sky Medradar data. Remote Sens. Environ. 2017; 202,250-275. DOI: https://doi.org/10.1016/j.rse.2017.07.017
Osmanoğlu, B., Sunar, F., Wdowinski, S., Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016; 115, 90-102. DOI: https://doi.org/10.1016/j.isprsjprs.2015.10.003
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature. 1993; 364 (6433), 138–142. DOI: https://doi.org/10.1038/364138a0
Wasowski, J., Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014; 174, 103-138. DOI: https://doi.org/10.1016/j.enggeo.2014.03.003
Crosetto, M., Monserrat, O., Bremmer, C., Hanssen, R., Capes, R., Marsh, S.Ground motion monitoring using SAR interferometry: quality assessment. Eur.Geol. 2009; 26, 12–15.
Colesanti, C., & Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology. 2006; 88(3-4), 173-199. DOI: https://doi.org/10.1016/j.enggeo.2006.09.013
Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., & Rizzo, V. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology. 2003; 68(1-2), 31-51. DOI: https://doi.org/10.1016/S0013-7952(02)00197-7
Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., & Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE transactions on geoscience and remote sensing. 2004; 42(7), 1377-1386. DOI: https://doi.org/10.1109/TGRS.2004.828196
Casu, F., Manzo, M., & Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment. 2006; 102(3-4), 195-210. DOI: https://doi.org/10.1016/j.rse.2006.01.023
Ferretti, A., Prati, C., & Rocca, F. Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing. 2001; 39(1), 8-20. DOI: https://doi.org/10.1109/36.898661
Hooper, A., Zebker, H., Segall, P., & Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters; 2004; 31(23). DOI: https://doi.org/10.1029/2004GL021737
Hu, X., Biirgmann, R., Schulz, W.H., Fielding, E.J. Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nat.Commun. 2020; 11,2792. DOI: https://doi.org/10.1038/s41467-020-16617-7
Huang, O., Crosetto, M., Monserrat, 0., Crippa, B. Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data. ISPRS J.Photogramm.Remote Sens. 2017; 128204-211. DOI: https://doi.org/10.1016/j.isprsjprs.2017.03.016
Liu, X., Zhao, C., Zhang, Q., Lu, Z., Li, Z., Yang, C., ... & Liu, C. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng. Geol. 2021; 284, 106033. DOI: https://doi.org/10.1016/j.enggeo.2021.106033
Li, Z., Muller, J. P., Cross, P., Fielding, E. J. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. J. Geophys. Res. Solid Earth. 2005; 110(B3). DOI: https://doi.org/10.1029/2004JB003446
Doin, M.P., Lasserre, C., Peltzer, G., Cavalié, O., Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models. J. Appl. Geophys. 2009; 69, 35–50. DOI: https://doi.org/10.1016/j.jappgeo.2009.03.010
Jolivet, R., Grandin, R., Lasserre, C., Doin, M.P., Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011; 38. DOI: https://doi.org/10.1029/2011GL048757
Beauducel, F., Briole, P., Froger, J.-L. Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): deformation or tropospheric effect? Journal of Geophysical Research: Solid Earth. 2000; 105, 16391–16402. DOI: https://doi.org/10.1029/2000JB900095
Dong, J., Zhang, L., Liao, M., & Gong, J. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sensing of Environment. 2019; 233, 111370. DOI: https://doi.org/10.1016/j.rse.2019.111370
Werner, C., Wegmuller, U., Strozzi, T., Wiesmann, A. Interferometric point target analysis for deformation mapping. Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. DOI: https://doi.org/10.1142/9789812702630_0015
Cai, J., Zhang, L., Dong, J., Guo, J., Wang, Y., & Liao, M. Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN. International Journal of Applied Earth Observation and Geoinformation. 2023; 124, 103516. DOI: https://doi.org/10.1016/j.jag.2023.103516
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.