Overcoming Weak Grid Challenges: A Combined Approach to VSI Stability with Impedance Adjustment, Control Optimization, and Microgrid Integration

Authors

  • Harendra Pal Singh Govind Ballabh Pant University of Agriculture and Technology image/svg+xml
  • Sourav Bose National Institute of Technology Srinagar image/svg+xml
  • Anurag K. Swami Govind Ballabh Pant University of Agriculture and Technology image/svg+xml

DOI:

https://doi.org/10.4108/ew.5788

Keywords:

Controller stability criterion, Heuristic optimization technique, Power quality, Total Harmonic Distortion, Weak grid condition, Impedance-based stability, Standalone microgrid system

Abstract

This paper addresses the challenges in Voltage Source Inverter (VSI) systems connected to weak grids, where frequent impedance changes lead to instability and power quality issues. This research studies how changing grid impedance affects current distortion and the stability of a VSI. It proposes the stability analysis of a single loop controller and optimize its settings using various techniques (ZN-method, PSO, GA) to ensure VSI stability and meet current distortion limits (THD compliance), when grid impedance varies. The primary focus revolves around addressing two key challenges: managing impedance variations at the PCC and enhancing the tracking performance of the PI controller. The VSI-based system connected to the weak grid and in standalone mode is simulated on Typhoon HIL, to validate the effectiveness of obtained optimized controller parameters by changing various conditions like, the output power regulation and sudden load change in a standalone distribution network. The MATLAB/SIMULINK with m-files is utilized for the parameters optimization and controller model simulation purposes. This research is important for developing more reliable and resilient power systems, specifically by investigating the transient behaviour of VSI frequency and voltage under sudden changes, to ensure an uninterruptible power supply to critical loads.

Downloads

Download data is not yet available.

References

[1] Panigrahi, R., Mishra, S. K., Srivastava, S. C., Srivastava, A. K., & Schulz, N. N. (2020). Grid integration of small-scale photovoltaic systems in secondary distribution network—A review. IEEE Transactions on Industry Applications, 56(3), 3178-3195.

[2] Figueira, H. H., Hey, H. L., Schuch, L., Rech, C., & Michels, L. (2015, June). Brazilian grid-connected photovoltaic inverters standards: A comparison with IEC and IEEE. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 1104-1109). IEEE.

[3] Wu, Y. K., Lin, J. H., & Lin, H. J. (2017). Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison. IEEE Transactions on Industry Applications, 53(4), 3205-3216.

[4] IEEE Standards Board. (2003). IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems: 1547-2003. IEEE.

[5] Standard, I. E. C. (2004). Photovoltaic (pv) systems-characteristics of the utility interface. IEC: Geneva, Switzerland.

[6] IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,(2000), in IEEE Std 929-2000, doi: 10.1109/IEEESTD.2000.91304.

[7] VDE (2012). VDE-AR-N 4105:2011-08 Power generation systems connected to the low-voltage distribution network.

[8] California Public Utilities Commission. (2014). Rule 21 Generating Facility Interconnections. California Public Utilities Commission: San Francisco, CA, USA.

[9] Blooming, T. M., & Carnovale, D. J. (2006, June). Application of IEEE Std 519-1992 harmonic limits. In Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference (pp. 1-9). IEEE.

[10] IEEE Standard for Harmonic Control in Electric Power Systems, (2022), in IEEE Std 519-2022 (Revision of IEEE Std 519-2014) , pp.1-31, 5 Aug. 2022, doi: 10.1109/IEEESTD.2022.9848440.

[11] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, (2014) in IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp.1-29, 11 June 2014, doi: 10.1109/IEEESTD.2014.6826459.

[12] Channegowda, P., & John, V. (2010). Filter optimization for grid interactive voltage source inverters. IEEE Transactions on Industrial Electronics, 57(12), 4106-4114.

[13] Prodanovic, M., & Green, T. C. (2003). Control and filter design of three-phase inverters for high power quality grid connection. IEEE transactions on Power Electronics, 18(1), 373-380.

[14] Isen, E., & Bakan, A. F. (2016). Development of 10 kW three-phase grid connected inverter. automatika, 57(2), 319-328.

[15] Rocabert, J., Luna, A., Blaabjerg, F., & Rodriguez, P.(2012). Control of power converters in AC microgrids. IEEE transactions on power electronics, 27(11), 4734-4749.

[16] Holmes, D. G., Lipo, T. A., Mcgrath, B. P., & Kong, W. Y. (2009). Optimized design of stationary frame three phase AC current regulators. IEEE transactions on power electronics, 24(11), 2417-2426.

[17] Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., & Blaabjerg, F. (2009). Evaluation of current controllers for distributed power generation systems. IEEE Transactions on power electronics, 24(3), 654-664.

[18] Basilio, J. C., & Matos, S. R. (2002). Design of PI and PID controllers with transient performance specification. IEEE Transactions on education, 45(4), 364-370.

[19] Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal model control: PID controller design. Industrial & engineering chemistry process design and development, 25(1), 252-265.

[20] Hassan, M. A., & Abido, M. A. (2010). Optimal design of microgrids in autonomous and grid-connected modes using particle swarm optimization. IEEE Transactions on power electronics, 26(3), 755-769.

[21] Hu, J., Zhu, J., & Dorrell, D. G. (2014). Model predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction. IEEE Transactions on Industry Applications, 51(1), 587-594.

[22] Temiz, H., Keysan, O., & Demirok, E. (2020). Adaptive controller based on grid impedance estimation for stable operation of grid-connected inverters under weak grid conditions. IET Power Electronics, 13(13), 2692-2705.

[23] IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities,(1917) in IEEE Std 1204-1997,1-216, 21 Jan. 1997, doi: 10.1109/IEEESTD.1997.85949.

[24] Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., & Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on evolutionary computation, 12(2), 171-195.

[25] Kennedy, J., & Eberhart, R. (1995, November). Parti-cle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942-1948).

[26] Deb, K., Sindhya, K., & Okabe, T. (2007, July). Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings of the 9th annual conference on genetic and evolutionary computation (pp. 1187-1194).

[27] Awouda, A. E. A., & Mamat, R. B. (2010, February). Refine PID tuning rule using ITAE criteria. In 2010 The 2nd International conference on computer and automation engineering (ICCAE) (Vol. 5, pp. 171-176). IEEE.

[28] Rodríguez-Molina, A., Mezura-Montes, E., Villarreal-Cervantes, M. G., & Aldape-Pérez, M. (2020). Multi-objective meta-heuristic optimization in intelligent con-trol: A survey on the controller tuning problem. Applied Soft Computing, 93, 106342.

[29] Osório, C. R., Borin, L. C., Koch, G. G., & Montagner, V. F. (2019, December). Optimization of robust PI controllers for grid-tied inverters. In 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC) (pp. 1-6). IEEE.

[30] Oliveira, A. C., Jacobina, C. B., & Lima, A. M. N. (2007). Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies. IEEE Transactions on Industrial Electronics, 54(4), 2295-2304.

[31] Liu, Y., Ben, H., Li, C., & Wang, D. (2012, June). Research of the dead-time compensation based on the three-phase grid-connected inverter. In Proceedings of The 7th International Power Electronics and Motion Control Conference (Vol. 1, pp. 510-514). IEEE.

[32] Alenius, H., Berg, M., Luhtala, R., & Roinila, T. (2019, October). Stability and performance analysis of grid-connected inverter based on online measurements of current controller loop. In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (Vol. 1, pp. 2013-2019). IEEE.

[33] Pattabiraman, D., Lasseter, R. H., & Jahns, T. M. (2018, August). Comparison of grid following and grid forming control for a high inverter penetration power system. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE.

[34] Jayasinghe, G., & Bahrani, B. (2021, June). Stability-Enhancing Measures for Weak Grids Study Australian Renewable Energy Agency, Milestone2 report.

[35] Meersman, B., Renders, B., Degroote, L., Vandoorn, T., & Vandevelde, L. (2010, July). The influence of grid-connected three-phase inverters on voltage unbalance. In IEEE PES General Meeting (pp. 1-9). IEEE.

[36] Zhang, Q., Mao, M., Ke, G., Zhou, L., & Xie, B. (2020). Stability problems of PV inverter in weak grid: a review. IET Power Electronics, 13(11), 2165-2174.

[37] Saïd-Romdhane, M. B., Naouar, M. W., Slama-Belkhodja, I., & Monmasson, E. (2016). Robust active damping methods for LCL filter-based grid-connected converters. IEEE transactions on power electronics, 32(9), 6739-6750.

[38] Hu, X., Liu, T., He, C., Ma, Y., Su, Y., Yin, H., & Liu, Y. (2020). Real-time power management technique for microgrid with flexible boundaries. IET Generation, Transmission & Distribution, 14(16), 3161-3170.

[39] Moretti, L., Meraldi, L., Niccolai, A., Manzolini, G., & Leva, S. (2021). An innovative tunable rule-based strategy for the predictive management of hybrid microgrids. Electronics, 10(10), 1162.

[40] Rakhshani, E., Rouzbehi, K., Elsaharty, M. A., & Cortes, P. R. (2017). Heuristic optimization of supplementary controller for VSC-HVDC/AC interconnected grids con-sidering PLL. Electric Power Components and Systems, 45(3), 288-301.

[41] Teodorescu, R., Blaabjerg, F., Liserre, M., & Loh, P. C. (2006). Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proceedings-Electric Power Applications, 153(5), 750-762.

[42] Jalili, K., & Bernet, S. (2009). Design of LCL filters of active-front-end two-level voltage-source converters. IEEE Transactions on Industrial Electronics, 56(5), 1674-1689.

[43] Liserre, M., Blaabjerg, F., & Hansen, S. (2005). Design and control of an LCL-filter-based three-phase active rectifier. IEEE Transactions on industry applications, 41(5), 1281-1291.

[44] Bernet, S., Ponnaluri, S., & Teichmann, R. (2002). Design and loss comparison of matrix converters, and voltage-source converters for modern AC drives. IEEE Transactions on Industrial Electronics, 49(2), 304-314.

[45] Han, Y., Yang, M., Li, H., Yang, P., Xu, L., Coelho, E. A. A., & Guerrero, J. M. (2019). Modeling and stability analysis of LCL-type grid-connected inverters: A comprehensive overview. IEEE Access, 7, 114975-115001.

[46] Karshenas, H. R., & Saghafi, H. (2006, July). Basic criteria in designing LCL filters for grid connected converters. In 2006 IEEE International Symposium on Industrial Electronics (Vol. 3, pp. 1996-2000). IEEE.

[47] Wang, T. C., Ye, Z., Sinha, G., & Yuan, X. (2003, June). Output filter design for a grid-interconnected three-phase inverter. In IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC’03. (Vol. 2, pp. 779-784). IEEE.

[48] Zou, Z., Wang, Z., & Cheng, M. (2013). Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter. IEEE Transactions on Power Electronics, 29(7), 3830-3839.

[49] He, J., & Li, Y. W. (2011). Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Transactions on Power Electronics, 27(4), 1850-1861.

[50] Domański, P. D. (2020). Control Performance Assess-ment: Theoretical Analyses and Industrial Practice (Vol. 245). Cham: Springer.

[51] Singh, H. P., Swami, A. K. (2019). A Review of Power Quality Improvements by using FACTS devices. International Journal of Engineering and Science (IJES), 8, 53-64.

[52] Parvez, M., Elias, M. F. M., Abd Rahim, N., Blaabjerg, F., Abbott, D., & Al-Sarawi, S. F. (2020). Comparative study of discrete PI and PR controls for single-phase UPS inverter. IEEE Access, 8, 45584-45595.

[53] Pogaku, N., Prodanovic, M., & Green, T. C. (2007). Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on power electronics, 22(2), 613-625.

[54] Peng, Q., Jiang, Q., Yang, Y., Liu, T., Wang, H., & Blaabjerg, F. (2019). On the stability of power electronics-dominated systems: Challenges and potential solutions. IEEE Transactions on Industry Applications, 55(6), 7657-7670.

[55] H. P. Singh, A. Sharma, S. Bose and A. K. Swami,(2024) State space modelling and seamless transi-tion between Islanded and Grid-connected operation modes, International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, pp. 1-6, doi: 10.1109/IITCEE59897.2024.10467393.

[56] Kumar, S., & Singh, B. (2018). Seamless operation and control of single-phase hybrid PV-BES-utility synchro-nized system. IEEE Transactions on Industry Applica-tions, 55(2), 1072-1082.

[57] Rosso, R., Wang, X., Liserre, M., Lu, X., & Engelken, S. (2021). Grid-forming converters: Control approaches, grid-synchronization, and future trends—A review. IEEE Open Journal of Industry Applications, 2, 93-109.

[58] Liu, T., Wang, X., Liu, F., Xin, K., & Liu, Y. (2022). Transient stability analysis for grid-forming inverters transitioning from islanded to grid-connected mode. IEEE Open Journal of Power Electronics, 3, 419-432.

[59] Li, C., Yang, Y., Cao, Y., Wang, L., & Blaabjerg, F. (2020). Frequency and voltage stability analysis of grid-forming virtual synchronous generator attached to weak grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(3), 2662-2671.

[60] Wang, J., Pratt, A., & Baggu, M. (2019, August). Inte-grated synchronization control of grid-forming inverters for smooth microgrid transition. In 2019 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE.

[61] Li, Y., Gu, Y., & Green, T. C. (2022). Revisiting grid-forming and grid-following inverters: A duality theory. IEEE Transactions on Power Systems, 37(6), 4541-4554.

[62] Alghamdi, B., & Cañizares, C. A. (2020). Frequency regulation in isolated microgrids through optimal droop gain and voltage control. IEEE Transactions on Smart Grid, 12(2), 988-998.

[63] H. P. Singh, S. Som, A. Sharma, S. Bose and A. K. Swami, (2023) Seamless transition of inverters from islanding to grid-connected mode connected to weak grid, IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), SC, USA, pp. 1-6, doi: 10.1109/ONCON60463.2023.10431030.

[64] Du, W., Chen, Z., Schneider, K. P., Lasseter, R. H., Nandanoori, S. P., Tuffner, F. K., & Kundu, S. (2019). A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 963-975.

[65] Amin, M., & Zhong, Q. C. (2019). Resynchronization of distributed generation based on the universal droop controller for seamless transfer between operation modes. IEEE Transactions on Industrial Electronics, 67(9), 7574-7582.

[66] IEEE Standard for the Specification of Microgrid Controllers, in IEEE Std 2030.7-2017, pp.1-43, 23 April 2018, doi: 10.1109/IEEESTD.2018.8340204.

Downloads

Published

06-02-2025

How to Cite

1.
Singh HP, Bose S, Swami AK. Overcoming Weak Grid Challenges: A Combined Approach to VSI Stability with Impedance Adjustment, Control Optimization, and Microgrid Integration. EAI Endorsed Trans Energy Web [Internet]. 2025 Feb. 6 [cited 2025 Feb. 22];12. Available from: https://publications.eai.eu/index.php/ew/article/view/5788