RETRACTED ARTICLE: Study on Dynamic Response Characteristics of Offshore Floating Wind Turbine Pitch System
DOI:
https://doi.org/10.4108/ew.5800Keywords:
Offshore wind turbines, Simulation test, Vibration suppression, Dynamic characteristics, ReliabilityAbstract
This article has been retracted at the request of our research integrity team. You can find the retraction notice at the following link https://doi.org/10.4108/ew.7175
Downloads
References
BOSSANYI E A. Wind Turbine Control for Load Reduction [J]. Wind Energy, 2003, 6(3): 229-44.
NIELSEN F G, HANSON T D, SKAARE B R. Integrated Dynamic Analysis of Floating Offshore Wind Turbines [C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, New York, USA: ASME, 2006: 951-959 .
LARSEN T J, HANSON T D. A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine [J]. Journal of Physics: Conference Series, 2007, 75: 012073.
JONKMAN J. Influence of Control on the Pitch Damping of a Floating Wind Turbine [M]. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
NAMIK H, STOL K. Individual blade pitch control of floating offshore wind turbines [J]. Wind Energy, 2010, 13(1): 74-85.
ZHANG Y, CHEN Z, CHENG M. Proportional resonant individual pitch control for mitigation of wind turbines loads [J]. IET Renewable Power Generation, 2013, 7(3): 191-200.
HAN B, ZHOU L, YANG F, et al. Individual pitch controller based on fuzzy logic control for wind turbine load mitigation [J]. IET Renewable Power Generation, 2016, 10(5): 687-93.
LU Xiaoping, LI Wei, LIN Yonggang. Research on the Individual Pitch Control of Floating Offshore Wind Turbines [J]. Acta Energiae Solaris Sinica, 2012, 33(04): 600-8.
ZHOU Lawu, YANG Binyou, HAN Bing, et al. Individual Blade Pitch Control for the Floating Offshore Wind Turbines Bearing the Air-Hydrodynamic Coupling Loads [J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3607-14.
BOTTRELL G W. Passive Cyclic Pitch Control for Horizontal Axis Wind Turbines [J]. Wind Turbine Dynamics, 1981: 271-275.
LARSEN T J, MADSEN H A, THOMSEN K, et al. Reduction of Teeter angle Excursions for a Two-bladed Downwind Rotor Using Cyclic Pitch Control [C].Proceedings of the Conf Proc 2007 European Wind Energy Conference and Exhibition. Milan, 2007.
BOTTASSO C L, CROCE A, RIBOLDI C E D, et al. Cyclic Pitch Control for the Reduction of Ultimate Loads on Wind Turbines [J]. Journal of Physics: Conference Series, 2014, 524(1): 012063.
LI Q A, KAMADA Y, MAEDA T, et al. Fundamental Study on Aerodynamic Force of Floating Offshore Wind Turbine With Cyclic Pitch Mechanism [J]. Energy, 2016, 99: 20-31.
ZHANG Qi, PENG Zhike, TIAN Xinliang, et al. Model Design of Floating Offshore Wind Turbine andApplication in Ocean Engineering Tests [J]. Research and Exploration in Laboratory, 2019, 38(06): 9-12+7.
ZHANG Li, DING Qinwei, LI Chun, et al. Comparative Study on Effects of Wind Load on Motion Characteristics of Offshore Floating Wind Turbine Platforms [J]. Acta Energiae Solaris Sinica, 2021, 42(09): 302-11.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Energy Web

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.