Energy-Efficient Design of Seabed Substrate Detection Model Leveraging CNN-SVM Architecture and Sonar Data

Authors

  • Keming Wang School of Internet of Things Technology, Hangzhou Polytechnic, Hangzhou, 311402, Zhejiang, PR China
  • Chengli Wang Hangzhou SECK Intelligent Technology Co., Ltd., Hangzhou, 311121, Zhejiang, PR China
  • Wenbing Jin School of Internet of Things Technology, Hangzhou Polytechnic, Hangzhou, 311402, Zhejiang, PR China
  • Liuming Qi Hangzhou Institute of Applied Acoustics, Hangzhou, 310012, Zhejiang, PR China

DOI:

https://doi.org/10.4108/ew.6097

Keywords:

CNN, SVM, SONAR, ShuffleNet-DSE, backscattering

Abstract

This study introduces an innovative seabed substrate detection model that harnesses the complementary strengths of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to analyze sonar data with a focus on energy efficiency. The model addresses the challenges of underwater sensing and imaging, including variable lighting conditions, backscattering effects, and acoustic sensor limitations, while minimizing energy consumption. By leveraging advanced machine learning techniques, the proposed model aims to enhance seabed classification accuracy, a crucial aspect for marine operations, ecological studies, and energy-intensive underwater applications.The introduced ShuffleNet-DSE architecture demonstrates significant improvements in both accuracy and stability for seabed sediment image classification, while maintaining energy-efficient performance. This robust tool offers a valuable asset for underwater exploration, research, and monitoring efforts, especially in environments where energy resources are limited.

Downloads

Download data is not yet available.

References

Boomsma, W.; Warnaars, J. Blue mining. In Proceedings of the 2015 IEEE Underwater Technology (UT), Chennai, India, 23–25 February 2015; pp. 1–4 DOI: https://doi.org/10.1109/UT.2015.7108296

Cong, Y.; Gu, C.; Zhang, T.; Gao, Y. Underwater robot sensing technology: A survey. Fundam. Res. 2021, 1, 337–345. DOI: https://doi.org/10.1016/j.fmre.2021.03.002

Hein, J.R.; Mizell, K. Deep-Ocean Polymetallic Nodules and Cobalt-Rich Ferromanganese Crusts in the Global Ocean: New Sources for Critical Metals. In Proceedings of the United Nations Convention on the Law of the Sea, Part XI Regime and the International Seabed Authority: A Twenty-Five Year Journey; Brill Nijhoff: Boston, MA, USA, 2022; pp. 177–197. DOI: https://doi.org/10.1163/9789004507388_013

de Oliveira Soares, M.; Matos, E.; Lucas, C.; Rizzo, L.; Allcock, L.; Rossi, S. Microplastics in corals: An emergent threat. Mar. Pollut. Bull. 2020, 161, 111810. DOI: https://doi.org/10.1016/j.marpolbul.2020.111810

A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26_fig1_336805909 [accessed 21 Apr, 2024]

Domingos, L.C.; Santos, P.E.; Skelton, P.S.; Brinkworth, R.S.; Sammut, K. A survey of underwater acoustic data classification methods using deep learning for shoreline surveillance. Sensors 2022, 22, 2181. DOI: https://doi.org/10.3390/s22062181

Hashisho, Y.; Albadawi, M.; Krause, T.; von Lukas, U.F. Underwater color restoration using u-net denoising autoencoder. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; pp. 117–122. DOI: https://doi.org/10.1109/ISPA.2019.8868679

Gonçalves, L.C.d.C.V. Underwater Acoustic Communication System: Performance Evaluation of Digital Modulation Techniques. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2012.

Grall, P.; Kochanska, I.; Marszal, J. Direction-of-arrival estimation methods in interferometric echo sounding. Sensors 2020, 20, 3556. DOI: https://doi.org/10.3390/s20123556

Stephens, D.; Diesing, M. A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS ONE 2014, 9, e93950. DOI: https://doi.org/10.1371/journal.pone.0093950

Luo, X.; Qin, X.; Wu, Z.; Yang, F.; Wang, M.; Shang, J. Sediment classification of small-size seabed acoustic images using convolutional neural networks. IEEE Access 2019, 7, 98331–98339. DOI: https://doi.org/10.1109/ACCESS.2019.2927366

Qin, X.; Luo, X.; Wu, Z.; Shang, J. Optimizing the sediment classification of small side-scan sonar images based on deep learning. IEEE Access 2021, 9, 29416–29428. DOI: https://doi.org/10.1109/ACCESS.2021.3052206

Aleem, A.; Tehsin, S.; Kausar, S.; Jameel, A. Target Classification of Marine Debris Using Deep Learning. Intell. Autom. Soft Comput. 2022, 32, 73–85. DOI: https://doi.org/10.32604/iasc.2022.021583

Berthold, Tim & Leichter, Artem & Rosenhahn, Bodo & Berkhahn, Volker & Valerius, Jennifer. (2017). Seabed sediment classification of side-scan sonar data using convolutional neural networks. 1-8. 10.1109/SSCI.2017.8285220. DOI: https://doi.org/10.1109/SSCI.2017.8285220

https://arxiv.org/pdf/1707.01083.pdf

Ramachandran, P.—Zoph, B.—Le, Q. V.: Searching for Activation Functions. 2017, doi: 10.48550/arXiv.1710.05941.

Downloads

Published

04-06-2024

How to Cite

1.
Wang K, Wang C, Jin W, Qi L. Energy-Efficient Design of Seabed Substrate Detection Model Leveraging CNN-SVM Architecture and Sonar Data. EAI Endorsed Trans Energy Web [Internet]. 2024 Jun. 4 [cited 2024 Jun. 30];11. Available from: https://publications.eai.eu/index.php/ew/article/view/6097