Enhancing Efficiency and Energy Optimization: Data-Driven Solutions in Process Industrial Manufacturing
DOI:
https://doi.org/10.4108/ew.6098Keywords:
Process industries, Energy Optimization, Data analytics, Machine learning, Soft sensing, Control, Optimization, Reinforcement learning, High-level decision-making, Robust optimizationAbstract
This paper reviews the current state of research in data analytics and machine learning techniques, focusing on their applications in process industrial manufacturing, particularly in control and optimization. Key areas for future research include selection and transfer learning for process monitoring, addressing time-varying characteristics, and enhancing data-driven optimal control with domain-specific knowledge. Additionally, the paper explores reinforcement learning techniques and robust optimization, including distributional robust optimization, for high-level decision-making. Emphasizing the importance of historical knowledge of plants and processes, this paper aims to identify knowledge gaps and pave the way for future research in data-driven strategies for process industries, with a particular emphasis on energy efficiency and optimization.
Downloads
References
Shang C, You F. Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era. Engineering. 2019;5(6):1010-6. DOI: https://doi.org/10.1016/j.eng.2019.01.019
Giret A, Trentesaux D, Prabhu V. Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems. 2015;37:126-40. DOI: https://doi.org/10.1016/j.jmsy.2015.08.002
Ramachandran KM, Tsokos CP. Mathematical statistics with applications in R: Academic Press; 2020.
Datta S. Materials design using computational intelligence techniques: Crc Press; 2016. DOI: https://doi.org/10.1201/9781315373003
Datta S, Chattopadhyay P. Soft computing techniques in advancement of structural metals. International Materials Reviews. 2013;58(8):475-504. DOI: https://doi.org/10.1179/1743280413Y.0000000021
Kumar S. Neural networks: a classroom approach: Tata McGraw-Hill Education; 2004.
Kundu M, Ganguly S, Datta S, Chattopadhyay P. Simulating time temperature transformation diagram of steel using artificial neural network. Materials and Manufacturing Processes. 2009;24(2):169-73. DOI: https://doi.org/10.1080/10426910802612239
Goldberg D. Genetic Algorithm in Search, Optimization and Machine Learning, Pearson Education. Low Price Edition, Delhi. 2005.
Deb K. Multi-objective optimization using evolutionary algorithms: John Wiley & Sons; 2001.
Liu S, Cheng H. Manufacturing Process Optimization in the Process Industry. International Journal of Information Technology and Web Engineering (IJITWE). 2024;19(1):1-20. DOI: https://doi.org/10.4018/IJITWE.338998
Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence. 2013;35(8):1798-828. DOI: https://doi.org/10.1109/TPAMI.2013.50
Nair V, Hinton GE, editors. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (ICML-10); 2010.
Ge Z, Song Z, Ding SX, Huang B. Data mining and analytics in the process industry: The role of machine learning. Ieee Access. 2017;5:20590-616. DOI: https://doi.org/10.1109/ACCESS.2017.2756872
Shang C, Huang B, Yang F, Huang D. Probabilistic slow feature analysis‐based representation learning from massive process data for soft sensor modeling. AIChE Journal. 2015;61(12):4126-39. DOI: https://doi.org/10.1002/aic.14937
Shang C, Huang B, Yang F, Huang D. Slow feature analysis for monitoring and diagnosis of control performance. Journal of Process Control. 2016;39:21-34. DOI: https://doi.org/10.1016/j.jprocont.2015.12.004
Shu Y, Ming L, Cheng F, Zhang Z, Zhao J. Abnormal situation management: Challenges and opportunities in the big data era. Computers & Chemical Engineering. 2016;91:104-13. DOI: https://doi.org/10.1016/j.compchemeng.2016.04.011
Yu J, Qin SJ. Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models. AIChE Journal. 2008;54(7):1811-29. DOI: https://doi.org/10.1002/aic.11515
He QP, Wang J. Statistical process monitoring as a big data analytics tool for smart manufacturing. Journal of Process Control. 2018;67:35-43. DOI: https://doi.org/10.1016/j.jprocont.2017.06.012
Brosilow C, Tong M. Inferential control of processes: Part II. The structure and dynamics of inferential control systems. AIChE Journal. 1978;24(3):492-500. DOI: https://doi.org/10.1002/aic.690240314
Shardt YA, Hao H, Ding SX. A new soft-sensor-based process monitoring scheme incorporating infrequent KPI measurements. IEEE Transactions on Industrial Electronics. 2014;62(6):3843-51. DOI: https://doi.org/10.1109/TIE.2014.2364561
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & chemical engineering. 2009;33(4):795-814. DOI: https://doi.org/10.1016/j.compchemeng.2008.12.012
Ma Y, Huang B. Bayesian learning for dynamic feature extraction with application in soft sensing. IEEE Transactions on Industrial Electronics. 2017;64(9):7171-80. DOI: https://doi.org/10.1109/TIE.2017.2688970
Ma Y, Huang B. Extracting dynamic features with switching models for process data analytics and application in soft sensing. AIChE Journal. 2018;64(6):2037-51. DOI: https://doi.org/10.1002/aic.16059
Zhong W, Jiang C, Peng X, Li Z, Qian F. Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis. Industrial & Engineering Chemistry Research. 2018;57(29):9604-14. DOI: https://doi.org/10.1021/acs.iecr.8b01270
Gao X, Shang C, Jiang Y, Huang D, Chen T. Refinery scheduling with varying crude: A deep belief network classification and multimodel approach. AIChE Journal. 2014;60(7):2525-32. DOI: https://doi.org/10.1002/aic.14455
Li F, Zhang J, Shang C, Huang D, Oko E, Wang M. Modelling of a post-combustion CO2 capture process using deep belief network. Applied Thermal Engineering. 2018;130:997-1003. DOI: https://doi.org/10.1016/j.applthermaleng.2017.11.078
Ge Z. Process data analytics via probabilistic latent variable models: A tutorial review. Industrial & Engineering Chemistry Research. 2018;57(38):12646-61. DOI: https://doi.org/10.1021/acs.iecr.8b02913
Yuan X, Ge Z, Ye L, Song Z. Supervised neighborhood preserving embedding for feature extraction and its application for soft sensor modeling. Journal of Chemometrics. 2016;30(8):430-41. DOI: https://doi.org/10.1002/cem.2811
Hassine H, Barkallah M, Bellacicco A, Louati J, Riviere A, Haddar M. Multi objective optimization for sustainable manufacturing, application in turning. International Journal of Simulation Modelling. 2015;14(1):98-109. DOI: https://doi.org/10.2507/IJSIMM14(1)9.292
Chu Y, You F. Model-based integration of control and operations: Overview, challenges, advances, and opportunities. Computers & Chemical Engineering. 2015;83:2-20. DOI: https://doi.org/10.1016/j.compchemeng.2015.04.011
Appino RR, Ordiano JÁG, Mikut R, Faulwasser T, Hagenmeyer V. On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages. Applied energy. 2018;210:1207-18. DOI: https://doi.org/10.1016/j.apenergy.2017.08.133
Saltık MB, Özkan L, Ludlage JH, Weiland S, Van den Hof PM. An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects. Journal of Process Control. 2018;61:77-102. DOI: https://doi.org/10.1016/j.jprocont.2017.10.006
Shang C, You F. A data-driven robust optimization approach to scenario-based stochastic model predictive control. Journal of Process Control. 2019;75:24-39. DOI: https://doi.org/10.1016/j.jprocont.2018.12.013
Shang C, Chen W-H, Stroock AD, You F. Robust model predictive control of irrigation systems with active uncertainty learning and data analytics. IEEE transactions on control systems technology. 2019;28(4):1493-504. DOI: https://doi.org/10.1109/TCST.2019.2916753
Rosolia U, Zhang X, Borrelli F. Data-driven predictive control for autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems. 2018;1:259-86. DOI: https://doi.org/10.1146/annurev-control-060117-105215
Shapiro A, Dentcheva D, Ruszczynski A. Lectures on stochastic programming: modeling and theory: SIAM; 2021. DOI: https://doi.org/10.1137/1.9781611976595
Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization: Princeton university press; 2009. DOI: https://doi.org/10.1515/9781400831050
Delage E, Ye Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Operations research. 2010;58(3):595-612. DOI: https://doi.org/10.1287/opre.1090.0741
Bertsimas D, Thiele A. Robust and data-driven optimization: modern decision making under uncertainty. Models, methods, and applications for innovative decision making: INFORMS; 2006. p. 95-122. DOI: https://doi.org/10.1287/educ.1063.0022
Campi MC, Garatti S. The exact feasibility of randomized solutions of uncertain convex programs. SIAM Journal on Optimization. 2008;19(3):1211-30. DOI: https://doi.org/10.1137/07069821X
Birge JR, Louveaux F. Introduction to stochastic programming: Springer Science & Business Media; 2011. DOI: https://doi.org/10.1007/978-1-4614-0237-4
Shang C, Huang X, You F. Data-driven robust optimization based on kernel learning. Computers & Chemical Engineering. 2017;106:464-79. DOI: https://doi.org/10.1016/j.compchemeng.2017.07.004
Ning C, You F. Data-driven decision making under uncertainty integrating robust optimization with principal component analysis and kernel smoothing methods. Computers & Chemical Engineering. 2018;112:190-210. DOI: https://doi.org/10.1016/j.compchemeng.2018.02.007
MacGregor J, Bruwer M, Miletic I, Cardin M, Liu Z. Latent variable models and big data in the process industries. IFAC-PapersOnLine. 2015;48(8):520-4. DOI: https://doi.org/10.1016/j.ifacol.2015.09.020
Shu Y, Zhao J. Data-driven causal inference based on a modified transfer entropy. Computers & Chemical Engineering. 2013;57:173-80. DOI: https://doi.org/10.1016/j.compchemeng.2013.05.011
Qin SJ. Survey on data-driven industrial process monitoring and diagnosis. Annual reviews in control. 2012;36(2):220-34. DOI: https://doi.org/10.1016/j.arcontrol.2012.09.004
Pan SJ, Yang Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering. 2009;22(10):1345-59. DOI: https://doi.org/10.1109/TKDE.2009.191
Wang R, Edgar TF, Baldea M, Nixon M, Wojsznis W, Dunia R. A geometric method for batch data visualization, process monitoring and fault detection. Journal of Process Control. 2018;67:197-205. DOI: https://doi.org/10.1016/j.jprocont.2017.05.011
Kadlec P, Grbić R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Computers & chemical engineering. 2011;35(1):1-24. DOI: https://doi.org/10.1016/j.compchemeng.2010.07.034
Morariu O, Morariu C, Borangiu T, Răileanu S. Manufacturing systems at scale with big data streaming and online machine learning. Service Orientation in Holonic and Multi-Agent Manufacturing: Proceedings of SOHOMA 2017. 2018:253-64. DOI: https://doi.org/10.1007/978-3-319-73751-5_19
Geiger A, Lenz P, Urtasun R, editors. Are we ready for autonomous driving? the kitti vision benchmark suite. 2012 IEEE conference on computer vision and pattern recognition; 2012: IEEE. DOI: https://doi.org/10.1109/CVPR.2012.6248074
Duchesne C, Liu J, MacGregor J. Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems. 2012;117:116-28. DOI: https://doi.org/10.1016/j.chemolab.2012.04.003
Chen M, Khare S, Huang B. A unified recursive just-in-time approach with industrial near infrared spectroscopy application. Chemometrics and Intelligent Laboratory Systems. 2014;135:133-40. DOI: https://doi.org/10.1016/j.chemolab.2014.04.007
Liu D, Yang X, Wang D, Wei Q. Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE transactions on cybernetics. 2015;45(7):1372-85. DOI: https://doi.org/10.1109/TCYB.2015.2417170
Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P, editors. Benchmarking deep reinforcement learning for continuous control. International conference on machine learning; 2016: PMLR.
Mattera G, Caggiano A, Nele L. Optimal data-driven control of manufacturing processes using reinforcement learning: an application to wire arc additive manufacturing. Journal of Intelligent Manufacturing. 2024:1-20. DOI: https://doi.org/10.1007/s10845-023-02307-w
Wiesemann W, Kuhn D, Sim M. Distributionally robust convex optimization. Operations research. 2014;62(6):1358-76. DOI: https://doi.org/10.1287/opre.2014.1314
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.