Provision for Energy: A Resource Allocation Problem in Federated Learning for Edge Systems

Authors

DOI:

https://doi.org/10.4108/ew.6503

Keywords:

Energy Efficiency, Resource Allocation, Federated Learning

Abstract

The article explores an energy-efficient method for allocating transmission and computation resources for federated learning (FL) on wireless communication networks.  The model being considered involves each user training a local FL model using their limited local computing resources and the data they have collected.   These local models are then transmitted to a base station, where they are aggregated and broadcast back to all users.  The level of accuracy in learning, as well as computation and communication latency, are determined by the exchange of models between users and the base station.  Throughout the FL process, energy consumption for both local computation and transmission must be taken into account.   Given the limited energy resources of wireless users, the communication problem is formulated as an optimization problem with the goal of minimizing overall system energy consumption while meeting a latency requirement. To address this problem, we propose an iterative algorithm that takes into account factors such as bandwidth, power, and computational resources.  Results from numerical simulations demonstrate that the proposed algorithm can reduce energy consumption compared to traditional FL methods up to 51% reduction.

Downloads

Download data is not yet available.

References

P. K. R. Maddikunta, Q.-V. Pham, D. C. Nguyen, T. Huynh-The, O. Aouedi, G. Yenduri, S. Bhattacharya, T. R. Gadekallu, Incentive tech- niques for the internet of things: a survey, Journal of Network and Com- puter Applications (2022) 103464. DOI: https://doi.org/10.1016/j.jnca.2022.103464

Y. Sun, M. Peng, Y. Zhou, Y. Huang, S. Mao, Application of machine learning in wireless networks: Key techniques and open issues, IEEE Com- munications Surveys & Tutorials 21 (4) (2019) 3072–3108. DOI: https://doi.org/10.1109/COMST.2019.2924243

X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, X. Chen, Convergence of Edge Computing and Deep Learning: A Comprehensive Survey, IEEE Commun. Surv. Tutor. 22 (2) (2020) 869–904. DOI: https://doi.org/10.1109/COMST.2020.2970550

T. Alam, R. Gupta, Federated learning and its role in the privacy preser- vation of iot devices, Future Internet 14 (9) (2022) 246. DOI: https://doi.org/10.3390/fi14090246

Y. Wang, Y. Xu, Q. Shi, T.-H. Chang, Robust federated learning in wireless channels with transmission outage and quantization errors, in: 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, 2021, pp. 586–590. DOI: https://doi.org/10.1109/SPAWC51858.2021.9593221

Z. Xiong, R. Yu, D. Niyato, Blockchain-based federated learning for industrial metaverses: Incentive scheme with optimal aoi, in: 2022 IEEE International Conference on Blockchain (Blockchain), IEEE, 2022, pp. 71–78.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, K. Chan, When edge meets learning: Adaptive control for resource-constrained dis-tributed machine learning, in: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 63–71. DOI: https://doi.org/10.1109/INFOCOM.2018.8486403

M. M. Amiri, D. G¨und¨uz, Machine learning at the wireless edge: Dis- tributed stochastic gradient descent over-the-air, IEEE Transactions on Signal Processing 68 (2020) 2155–2169. DOI: https://doi.org/10.1109/TSP.2020.2981904

Q. Duan, S. Hu, R. Deng, Z. Lu, Combined federated and split learning in edge computing for ubiquitous intelligence in internet of things: State-of- the-art and future directions, Sensors 22 (16) (2022) 5983. DOI: https://doi.org/10.3390/s22165983

P. Manoharan, R. Walia, C. Iwendi, T. A. Ahanger, S. Suganthi, M. Kam- ruzzaman, S. Bourouis, W. Alhakami, M. Hamdi, Svm-based generative ad- verserial networks for federated learning and edge computing attack model and outpoising, Expert Systems (2022) e13072. DOI: https://doi.org/10.1111/exsy.13072

A. M. Albaseer, M. Abdallah, A. Al-Fuqaha, A. Erbad, Fine-grained data selection for improved energy efficiency of federated edge learning, IEEE Transactions on Network Science and Engineering.

B. Luo, X. Li, S. Wang, J. Huang, L. Tassiulas, Cost-effective federated learning design, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, IEEE, 2021, pp. 1– 10. DOI: https://doi.org/10.1109/INFOCOM42981.2021.9488679

J. Xu, H. Wang, Client selection and bandwidth allocation in wireless fed- erated learning networks: A long-term perspective, IEEE Transactions on Wireless Communications 20 (2) (2020) 1188– 1200. DOI: https://doi.org/10.1109/TWC.2020.3031503

Y. Liu, Y. Zhu, J. James, Resource-constrained federated learning with het- erogeneous data: Formulation and analysis, IEEE Transactions on Network Science and Engineering.

M. Kim, W. Saad, M. Mozaffari, M. Debbah, On the tradeoff between energy, precision, and accuracy in federated quantized neural networks, arXiv preprint arXiv:2111.07911.

H. G. Abreha, M. Hayajneh, M. A. Serhani, Federated learning in edge computing: a systematic survey, Sensors 22 (2) (2022) 450. DOI: https://doi.org/10.3390/s22020450

M. Chen, O. Semiari, W. Saad, X. Liu, C. Yin, Federated echo state learn- ing for minimizing breaks in presence in wireless virtual reality networks, IEEE Transactions on Wireless Communications 19 (1) (2019) 177– 191. DOI: https://doi.org/10.1109/TWC.2019.2942929

Q. Wang, Y. Xiao, H. Zhu, Z. Sun, Y. Li, X. Ge, Towards energy-efficient federated edge intelligence for iot networks, in: 2021 IEEE 41st Interna- tional Conference on Distributed Computing Systems Workshops (ICD- CSW), IEEE, 2021, pp. 55–62. DOI: https://doi.org/10.1109/ICDCSW53096.2021.00016

Y. Li, F. Li, L. Chen, L. Zhu, P. Zhou, Y. Wang, Power of redundancy: Surplus client scheduling for federated learning against user uncertainties, IEEE Transactions on Mobile Computing.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, A. T. Suresh, Scaffold: Stochastic controlled averaging for federated learning, in: Inter- national Conference on Machine Learning, PMLR, 2020, pp. 5132–5143.

S. L. Paulswamy, A. A. Roobert, K. Hariharan, A novel coverage improved deployment strategy for wireless sensor network, Wireless Personal Com- munications 124 (1) (2022) 867–891. DOI: https://doi.org/10.1007/s11277-021-09387-y

G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, K. Huang, Toward an intelligent edge: Wireless communication meets machine learning, IEEE communica- tions magazine 58 (1) (2020) 19–25. DOI: https://doi.org/10.1109/MCOM.001.1900103

C. Thapa, P. C. M. Arachchige, S. Camtepe, L. Sun, Splitfed: When feder- ated learning meets split learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 8485–8493. DOI: https://doi.org/10.1609/aaai.v36i8.20825

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated learning in resource constrained edge computing sys- tems, IEEE Journal on Selected Areas in Communications 37 (6) (2019) 1205– 1221. DOI: https://doi.org/10.1109/JSAC.2019.2904348

T. T. Vu, D. T. Ngo, H. Q. Ngo, M. N. Dao, N. H. Tran, R. H. Middleton, Joint resource allocation to minimize execution time of federated learning in cell-free massive mimo, IEEE Internet of Things Journal 9 (21) (2022) 21736–21750. DOI: https://doi.org/10.1109/JIOT.2022.3183295

M. Salehi, E. Hossain, Federated learning in unreliable and resource- constrained cellular wireless networks, IEEE Transactions on Communi- cations 69 (8) (2021) 5136–5151. DOI: https://doi.org/10.1109/TCOMM.2021.3081746

Y. Sun, S. Zhou, D. G¨und¨uz, Energy-aware analog aggregation for feder- ated learning with redundant data, in: ICC 2020-2020 IEEE International Conference on Communications (ICC), IEEE, 2020, pp. 1– 7. DOI: https://doi.org/10.1109/ICC40277.2020.9148853

K. Yang, T. Jiang, Y. Shi, Z. Ding, Federated learning via over-the-air com- putation, IEEE Transactions on Wireless Communications 19 (3) (2020) 2022–2035. DOI: https://doi.org/10.1109/TWC.2019.2961673

W. Shi, S. Zhou, Z. Niu, M. Jiang, L. Geng, Joint device scheduling and re- source allocation for latency constrained wireless federated learning, IEEE Transactions on Wireless Communications 20 (1) (2020) 453–467. DOI: https://doi.org/10.1109/TWC.2020.3025446

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, S. Cui, A joint learning and communications framework for federated learning over wireless networks, IEEE Transactions on Wireless Communications 20 (1) (2020) 269–283. DOI: https://doi.org/10.1109/TWC.2020.3024629

R. Hamdi, M. Chen, A. B. Said, M. Qaraqe, H. V. Poor, Federated learning over energy harvesting wireless networks, IEEE Internet of Things Journal 9 (1) (2021) 92– 103. DOI: https://doi.org/10.1109/JIOT.2021.3089054

A. A. Abdellatif, N. Mhaisen, A. Mohamed, A. Erbad, M. Guizani, Z. Dawy, W. Nasreddine, Communication-efficient hierarchical federated learning for iot heterogeneous systems with imbalanced data, Future Gen- eration Computer Systems 128 (2022) 406–419. DOI: https://doi.org/10.1016/j.future.2021.10.016

H.-C. Wu, The karush–kuhn–tucker optimality conditions in an optimiza- tion problem with interval-valued objective function, European Journal of Operational Research 176 (1) (2007) 46–59. DOI: https://doi.org/10.1016/j.ejor.2005.09.007

E. W. Weisstein, Lambert w-function, https://mathworld. wolfram. com/.

Z. Yang, M. Chen, W. Saad, C. S. Hong, M. Shikh-Bahaei, Energy efficient federated learning over wireless communication networks, IEEE Transac- tions on Wireless Communications 20 (3) (2020) 1935– 1949. DOI: https://doi.org/10.1109/TWC.2020.3037554

Downloads

Published

03-07-2024

How to Cite

1.
Liu M, Rajamanickam L, Parthasarathy R. Provision for Energy: A Resource Allocation Problem in Federated Learning for Edge Systems. EAI Endorsed Trans Energy Web [Internet]. 2024 Jul. 3 [cited 2024 Aug. 31];11. Available from: https://publications.eai.eu/index.php/ew/article/view/6503