Energy efficient data aggregation and improved prediction in cooperative surveillance system through Machine Learning and Particle Swarm based Optimization
DOI:
https://doi.org/10.4108/eai.3-6-2021.170014Keywords:
IT-enabled social transformation, Intelligent systems, Cooperative surveillance system, Data aggregation, Machine Learning, Particle Swarm OptimizationAbstract
The present pandemic demands touchless and autonomous, intelligent surveillance system to reduce human involvement. Heterogeneous types of sensors are used to improve the effectiveness of this surveillance system and a cooperative approach of such sensors will make the system further efficient due to variation in users such as corporate office, universities, manufacturing industries etc. The application of effective data aggregation technique on sensors is essential as the energy utilization of the system degrades the lifetime, coverage and computational overhead. The application of bio-inspired optimization technique like Particle Swarm Optimization for scheduling leads to improved performance of the system as the nature of the system is heterogeneous and requirement is multi-objective. Similarly the application of Support vector Machine as a classification and prediction algorithm on the huge data collected periodically makes the system further autonomous and intelligent.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Security and Safety
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.