Unsupervised Approach for Email Spam Filtering using Data Mining
DOI:
https://doi.org/10.4108/eai.9-3-2021.168962Keywords:
Spam Emails, Vector Space Model, Data Security, Machine Learning, M-DBSCANAbstract
The computer networks overwhelm with unwanted emails, which are called spam emails. This email brings financial damage to companies and losses of user reputation. In this paper, the increasing volume of these emails has created the intense need to design and implement robust anti-spam filtering using the vector space model and Machine Learning (ML). ML algorithms have successfully used to detect and filter spam emails that jeopardize the network resources and consume the bandwidth. The main objective is to apply unsupervised learning M-DBSCAN to classify spam and ham emails. A robust method using the Modified Density-Based Spatial Clustering of Applications with Noise (M-DBSCAN) is implemented. The extracted N-representative points from each cluster are applied in the online test. These points represent the cluster objects to detect spherical and non-spherical clusters. These N-representative points are formed from the training step to detect spam email using distance measures. The data set used from the Kaggle website included many objects of ham and spam emails. The results show good performance accuracy with 97.848% in M-DBSCAN compared with 95.918% for standard DBSCAN accuracy and efficient values in false-negative rate, false-positive rate, f-score and online time detection.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.