Matrix Factorization Based Recommendation System using Hybrid Optimization Technique
DOI:
https://doi.org/10.4108/eai.19-2-2021.168725Keywords:
matrix factorization, ALS, SGD, optimization, recommendation system, latent factor, collaborative filteringAbstract
In this paper, a matrix factorization recommendation algorithm is used to recommend items to the user by inculcating a hybrid optimization technique that combines Alternating Least Squares (ALS) and Stochastic Gradient Descent (SGD) in the advanced stage and compares the two individual algorithms with the hybrid model. This hybrid optimization algorithm can be easily implemented in the real world as a cold start can be easily reduced. The hybrid technique proposed is set side-by-side with the ALS and SGD algorithms individually to assess the pros and cons and the requirements to be met to choose a specific technique in a specific domain. The metric used for comparison and evaluation of this technique is Mean Squared Error (MSE).
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.