Implementation of Fuzzy Cognitive Map and Support Vector Machine for Classification of Oral Cancers
DOI:
https://doi.org/10.4108/eai.12-9-2018.155559Keywords:
Oral cancer, Fuzzy Cognitive Map, Histological Features, Support Vector MachineAbstract
Objective: Tumors at any stage may progress into cancer. Till now, cancer classificationis a challenging task for the researchers. Research on the cancer biology starts with the changes in the tissues. Oral cancer is a malignant cell growth in the oral cavity. Method: The proposed work combines Fuzzy Cognitive map (FCM) with Support Vector Machine (SVM) for grading oral tumor. The histological features are used as concepts and the interrelationships between the concepts are identified. FCM acts as a classifier to distinguish between benign and malignant cases. Further, the extracted output from FCM is fed as an input to the Support Vector Machine (SVM) classifier. This will improve the prediction capabilities. Result: The classification accuracy obtained for the proposed model is 92.10% for malignant cases and 94.11% for benign cases. Conclusion: The experimental results show that the combination of FCM with SVM obtained a good result when compared to the hybrid model using FCM.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.