Disaster Impact Mitigation using KDD and Support Vector Machine algorithms
DOI:
https://doi.org/10.4108/eai.12-6-2018.154812Keywords:
Knowledge Discovery in Databases, Support vector machine, SatelliteAbstract
Disasters such as Hurricanes, Typhoons, Floods and earthquakesare not good for the society since it causes serious damage for the society. A natural disaster causes loss in property as well as in life of victims. The victims need immediate help once they are affected by the disaster. The immediate need are rescue, food and communications. The survey says victims of recent disaster were unable to get instant communication regarding the evacuation path and other help from authorities for remedial action. This can be overcome with our proposed idea of having a database of area wise population along with the pre-disaster and post-disaster satellite images of the disaster affected area. Knowledge Discovery in Databases (KDD) is used in data pre-processing and to extract knowledge from the database. Support vector machine(SVM) is used to classify the disaster effect with the pre-disaster and post-disaster satellite images as input. The idea is implemented and tested with sample data and has given impressive results
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Energy Web
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.