A compact 1×3 two-mode selective silicon photonic router/switch using two tunable phase shifters
DOI:
https://doi.org/10.4108/eai.17-9-2021.170962Keywords:
mode division multiplexing, silicon-on-insulator, multimode interference waveguides, Y-junction coupler, mode multiplexing switchAbstract
In this work, we propose a design in the proof-of-concept of a 1×3 two-mode selective silicon-photonics router/switch. The proposed device composes of a Y-junction coupler, two multimode interference (MMI) couplers, and two phase-shifters on the silicon-on-insulator (SOI) rib waveguides. The input modes of TE0 and TE1 can be arbitrarily and simultaneously routed to the yearning output ports by setting appropriate values (ON/OFF) for two tunable phase shifters (PSs). The structural optimization and efficient characterization processes are carried out by numerical simulation via three-dimensional beam propagation method. The proposed device exhibits the operation ability over the C-band with good optical performances in terms of insertion loss smaller than 1 dB, crosstalk under -19 dB, and relatively large geometry tolerances. Moreover, the proposed device can integrate into a footprint as compact as 5 μm ×475 μm. Such significant advantages are beneficial and promising potentials for very large-scale photonic integrated circuits, high-speed optical interconnects, and short-haul few-mode fiber communication systems.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
Funding data
-
Quỹ Đổi mới sáng tạo Vingroup
Grant numbers VINIF.2019.TS.16