Phase Impairment Estimation for mmWave MIMO Systems with Low Resolutions ADC and Imperfect CSI


  • Nguyen Dinh Ngoc Telecommunications University, Khanh Hoa, Vietnam
  • Kien Truong Fulbright University Vietnam image/svg+xml



Hybrid analog and digital beamforming,, Non-ideal hardware, Phase noise estimation, Millimeter wave MIMO, Imperfect CSI, Quantization noise


Multiple-Input Multiple-Output systems operating at millimeter wave band (mmWave MIMO) are a promising technology next generations of mobile networks. In practice, the non-ideal hardware is a challenge for commercially viable mmWave MIMO transceivers and come from non-linearities of the amplifier, phase noise, quantization errors, mutual coupling between antenna ports, and In-phase/Quadrature (I/Q) imbalance. As a result, the received signals are affected by non-ideal transceiver hardware components, thus reduce the performance of such systems, especially phase impairment caused by phase noise and carrier frequency offset (CFO). In this paper, we consider a mmWave MIMO system model that takes into account many practical hardware impairments and imperfect channel state information (CSI). Our main contributions are a problem formulation of phase impairments with imperfect CSI and a low-complexity estimation method to solve the problem. Numerical results are provided to evaluate the performance of the proposed algorithm.


Download data is not yet available.


Mehrpouyan, H., Nasir, A.A., Blostein, S.D., Eriksson, T., Karagiannidis, G.K. and Svensson, T. (2012) Joint estimation of channel and oscillator phase noise in MIMO systems. IEEE Trans. Signal Processing 60(9): 4790–4807. doi:10.1109/TSP.2012.2202652. DOI:

Kolawole, O., Papazafeiropoulos, A. and Ratnarajah, T. (2018) Impact of hardware impairments on mmWave MIMO systems with hybrid precoding. In IEEE Wireless Commun. Networking Conf.: 1–6. DOI:

Björnson, E., Matthaiou, M. and Debbah, M. (2015) Massive MIMO with non-ideal arbitrary arrays: Hard-ware scaling laws and circuit-aware design. IEEE Trans. Wireless Commun. 14: 4353–4368. DOI:

Björnson, E., Hoydis, J., Kountouris, M. and Debbah, M. (2014) Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits. IEEE Trans. Info. Theory 60(11): 7112–7139. doi:10.1109/TIT.2014.2354403. DOI:

Corvaja, R., Armada, A.G., Vazquez, M.A. and Párez-Neira, A. (2017) Design of pre-coding and combining in hybrid analog-digital massive MIMO with phase noise. In European Signal Processing Conf.: 2458–2462. doi:10.23919/EUSIPCO.2017.8081652. DOI:

Faragallah, O., El-sayed, H. and El-Mashed, M. (2020) Estimation and tracking for millimeter wave mimo systems under phase noise problem. IEEE Access PP: 1–1. doi:10.1109/ACCESS.2020.3045045. DOI:

Mehrpouyan, H., Nasir, A.A., Eriksson, T., Blostein, S.D., Karagiannidis, G.K. and Svensson,

T. (2012) Time-varying phase noise and channel estimation in MIMO systems. In IEEE Int. Workshop Signal Processing Adv. Wireless Commun.: 560–564. doi:10.1109/SPAWC.2012.6292972. DOI:

Myers, N.J. and Heath, R.W. (2019) Message passing-based joint CFO and channel estimation in mmWave sys-tems with one-bit ADCs. IEEE Trans. Wireless Commun. 18(6): 3064–3077. doi:10.1109/TWC.2019.2909865. DOI:

Ribeiro, L.N., Schwarz, S., Rupp, M. and de Almeida, A. L.F. (2018) Energy efficiency of mmwave massive mimo precoding with low-resolution dacs. IEEE Journal of Selected Topics in Signal Processing 12(2): 298–312. doi:10.1109/JSTSP.2018.2824762. DOI:

Mo, J., Alkhateeb, A., Abu-Surra, S. and Heath, R.W. (2017) Hybrid architectures with few-bit ADC receivers: Aschievable rates and energy-rate trade-offs. IEEE Trans. Wireless Commun. 16(4): 2274–2287. doi:10.1109/TWC.2017.2661749. DOI:

Mo, J., Schniter, P. and Heath, R.W. (2018) Channel estimation in broadband millimeter wave MIMO sys-tems with few-bit ADCs. IEEE Trans. Signal Processing 66(5): 1141–1154. doi:10.1109/TSP.2017.2781644. DOI:

Koohian, A., Mehrpouyan, H., Nasir, A. and Durrani, S. (2019) Joint channel and phase noise estimation for mmWave full-duplex communication systems. EURASIP J. Adv. Signal Processing 2019. doi:10.1186/s13634-019-0614-8. DOI:

Darryl Dexu Lin, Pacheco, R.A., Teng Joon Lim and Hatzinakos, D. (2006) Joint estimation of chan-nel response, frequency offset, and phase noise in OFDM. IEEE Trans. Signal Processing 54(9): 3542–3554. doi:10.1109/TSP.2006.879265. DOI:

Salim, O.H., Nasir, A.A., Mehrpouyan, H., Xiang, W., Durrani, S. and Kennedy, R.A. (2014) Channel, phase noise, and frequency offset in OFDM systems: Joint estimation, data detection, and hybrid cramér-rao lower bound. IEEE Trans. Commun. 62(9): 3311–3325. doi:10.1109/TCOMM.2014.2345056. DOI:

Myers, N.J. and Heath, R.W. (2017) Joint CFO and channel estimation in millimeter wave systems with one-bit ADCs. In IEEE Int. Workshop Computational Adv. Multi-Sensor Adaptive Processing (CAMSAP): 1–5. doi:10.1109/CAMSAP.2017.8313145. DOI:

Rodriguez-Fernandez, J., Gonzalez-Prelcic, N. and Heath, R.W. (2018) Channel estimation for mil-limeter wave MIMO systems in the presence of CFO uncertainties. In IEEE Int. Conf. Commun.: 1–6. doi:10.1109/ICC.2018.8422342. DOI:

Rodríguez-Fernández, J. and González-Prelcic, N.(2019) Channel estimation for hybrid mmwave mimo systems with cfo uncertainties. IEEE Transactions on Wireless Communications 18(10): 4636–4652. doi:10.1109/TWC.2019.2924004. DOI:

Vlachos, E., Kaushik, A. and Thompson, J.(2018) Energy efficient transmitter with low resolution dacs for massive mimo with partially connected hybrid architecture. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring): 1–5. doi:10.1109/VTCSpring.2018.8417650. DOI:

Roth, K., Pirzadeh, H., Swindlehurst, A.L. and Nossek, J.A. (2018) A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect csi. IEEE J. Sel. Topics Signal Processing 12(3): 484–498. doi:10.1109/JSTSP.2018.2813973. DOI:

Choi, J., Evans, B.L. and Gatherer, A. (2017) Resolution-adaptive hybrid MIMO architectures for millimeter wave communications. IEEE Trans. Signal Processing 65(23): 6201–6216. DOI:

Demir, A., Mehrotra, A. and Roychowdhury, J. (2000) Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Trans. Circuits Systems 47(5): 655–674. doi:10.1109/81.847872. DOI:

Ganesh, R.S., Jayakumari, J. and Akhila, I.P. (2011) Channel estimation analysis in MIMO-OFDM wireless systems. In Int. Conf. Signal Processing, Commun., Computing and Networking Tech.: 399–403. DOI:

Alkhateeb, A., Ayach, O.E., Leus, G. and Heath, R.W. (2014) Channel estimation and Hybrid pre-coding for Millimeter wave cellular systems. IEEE J. Slected Topics in Signal Processing 8(5): 831–846. doi:10.1109/JSTSP.2014.2334278. DOI:

Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K. and Heath, R.W. (2017) Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1): 403–430. doi:10.1109/TCOMM.2016.2618794. DOI:

Ayach, O.E., Rajagopal, S., Abu-Surra, S., Pi, Z. and Heath, R.W. (2014) Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3): 1499–1513. doi:10.1109/TWC.2014.011714.130846. DOI:




How to Cite

Ngoc, N. D., & Truong, K. (2022). Phase Impairment Estimation for mmWave MIMO Systems with Low Resolutions ADC and Imperfect CSI. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 9(4), e3.