Phase Impairment Estimation for mmWave MIMO Systems with Low Resolutions ADC and Imperfect CSI
DOI:
https://doi.org/10.4108/eetinis.v9i4.2467Keywords:
Hybrid analog and digital beamforming,, Non-ideal hardware, Phase noise estimation, Millimeter wave MIMO, Imperfect CSI, Quantization noiseAbstract
Multiple-Input Multiple-Output systems operating at millimeter wave band (mmWave MIMO) are a promising technology next generations of mobile networks. In practice, the non-ideal hardware is a challenge for commercially viable mmWave MIMO transceivers and come from non-linearities of the amplifier, phase noise, quantization errors, mutual coupling between antenna ports, and In-phase/Quadrature (I/Q) imbalance. As a result, the received signals are affected by non-ideal transceiver hardware components, thus reduce the performance of such systems, especially phase impairment caused by phase noise and carrier frequency offset (CFO). In this paper, we consider a mmWave MIMO system model that takes into account many practical hardware impairments and imperfect channel state information (CSI). Our main contributions are a problem formulation of phase impairments with imperfect CSI and a low-complexity estimation method to solve the problem. Numerical results are provided to evaluate the performance of the proposed algorithm.
Downloads
References
Mehrpouyan, H., Nasir, A.A., Blostein, S.D., Eriksson, T., Karagiannidis, G.K. and Svensson, T. (2012) Joint estimation of channel and oscillator phase noise in MIMO systems. IEEE Trans. Signal Processing 60(9): 4790–4807. doi:10.1109/TSP.2012.2202652. DOI: https://doi.org/10.1109/TSP.2012.2202652
Kolawole, O., Papazafeiropoulos, A. and Ratnarajah, T. (2018) Impact of hardware impairments on mmWave MIMO systems with hybrid precoding. In IEEE Wireless Commun. Networking Conf.: 1–6. DOI: https://doi.org/10.1109/WCNC.2018.8377045
Björnson, E., Matthaiou, M. and Debbah, M. (2015) Massive MIMO with non-ideal arbitrary arrays: Hard-ware scaling laws and circuit-aware design. IEEE Trans. Wireless Commun. 14: 4353–4368. DOI: https://doi.org/10.1109/TWC.2015.2420095
Björnson, E., Hoydis, J., Kountouris, M. and Debbah, M. (2014) Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits. IEEE Trans. Info. Theory 60(11): 7112–7139. doi:10.1109/TIT.2014.2354403. DOI: https://doi.org/10.1109/TIT.2014.2354403
Corvaja, R., Armada, A.G., Vazquez, M.A. and Párez-Neira, A. (2017) Design of pre-coding and combining in hybrid analog-digital massive MIMO with phase noise. In European Signal Processing Conf.: 2458–2462. doi:10.23919/EUSIPCO.2017.8081652. DOI: https://doi.org/10.23919/EUSIPCO.2017.8081652
Faragallah, O., El-sayed, H. and El-Mashed, M. (2020) Estimation and tracking for millimeter wave mimo systems under phase noise problem. IEEE Access PP: 1–1. doi:10.1109/ACCESS.2020.3045045. DOI: https://doi.org/10.1109/ACCESS.2020.3045045
Mehrpouyan, H., Nasir, A.A., Eriksson, T., Blostein, S.D., Karagiannidis, G.K. and Svensson,
T. (2012) Time-varying phase noise and channel estimation in MIMO systems. In IEEE Int. Workshop Signal Processing Adv. Wireless Commun.: 560–564. doi:10.1109/SPAWC.2012.6292972. DOI: https://doi.org/10.1109/SPAWC.2012.6292972
Myers, N.J. and Heath, R.W. (2019) Message passing-based joint CFO and channel estimation in mmWave sys-tems with one-bit ADCs. IEEE Trans. Wireless Commun. 18(6): 3064–3077. doi:10.1109/TWC.2019.2909865. DOI: https://doi.org/10.1109/TWC.2019.2909865
Ribeiro, L.N., Schwarz, S., Rupp, M. and de Almeida, A. L.F. (2018) Energy efficiency of mmwave massive mimo precoding with low-resolution dacs. IEEE Journal of Selected Topics in Signal Processing 12(2): 298–312. doi:10.1109/JSTSP.2018.2824762. DOI: https://doi.org/10.1109/JSTSP.2018.2824762
Mo, J., Alkhateeb, A., Abu-Surra, S. and Heath, R.W. (2017) Hybrid architectures with few-bit ADC receivers: Aschievable rates and energy-rate trade-offs. IEEE Trans. Wireless Commun. 16(4): 2274–2287. doi:10.1109/TWC.2017.2661749. DOI: https://doi.org/10.1109/TWC.2017.2661749
Mo, J., Schniter, P. and Heath, R.W. (2018) Channel estimation in broadband millimeter wave MIMO sys-tems with few-bit ADCs. IEEE Trans. Signal Processing 66(5): 1141–1154. doi:10.1109/TSP.2017.2781644. DOI: https://doi.org/10.1109/TSP.2017.2781644
Koohian, A., Mehrpouyan, H., Nasir, A. and Durrani, S. (2019) Joint channel and phase noise estimation for mmWave full-duplex communication systems. EURASIP J. Adv. Signal Processing 2019. doi:10.1186/s13634-019-0614-8. DOI: https://doi.org/10.1186/s13634-019-0614-8
Darryl Dexu Lin, Pacheco, R.A., Teng Joon Lim and Hatzinakos, D. (2006) Joint estimation of chan-nel response, frequency offset, and phase noise in OFDM. IEEE Trans. Signal Processing 54(9): 3542–3554. doi:10.1109/TSP.2006.879265. DOI: https://doi.org/10.1109/TSP.2006.879265
Salim, O.H., Nasir, A.A., Mehrpouyan, H., Xiang, W., Durrani, S. and Kennedy, R.A. (2014) Channel, phase noise, and frequency offset in OFDM systems: Joint estimation, data detection, and hybrid cramér-rao lower bound. IEEE Trans. Commun. 62(9): 3311–3325. doi:10.1109/TCOMM.2014.2345056. DOI: https://doi.org/10.1109/TCOMM.2014.2345056
Myers, N.J. and Heath, R.W. (2017) Joint CFO and channel estimation in millimeter wave systems with one-bit ADCs. In IEEE Int. Workshop Computational Adv. Multi-Sensor Adaptive Processing (CAMSAP): 1–5. doi:10.1109/CAMSAP.2017.8313145. DOI: https://doi.org/10.1109/CAMSAP.2017.8313145
Rodriguez-Fernandez, J., Gonzalez-Prelcic, N. and Heath, R.W. (2018) Channel estimation for mil-limeter wave MIMO systems in the presence of CFO uncertainties. In IEEE Int. Conf. Commun.: 1–6. doi:10.1109/ICC.2018.8422342. DOI: https://doi.org/10.1109/ICC.2018.8422342
Rodríguez-Fernández, J. and González-Prelcic, N.(2019) Channel estimation for hybrid mmwave mimo systems with cfo uncertainties. IEEE Transactions on Wireless Communications 18(10): 4636–4652. doi:10.1109/TWC.2019.2924004. DOI: https://doi.org/10.1109/TWC.2019.2924004
Vlachos, E., Kaushik, A. and Thompson, J.(2018) Energy efficient transmitter with low resolution dacs for massive mimo with partially connected hybrid architecture. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring): 1–5. doi:10.1109/VTCSpring.2018.8417650. DOI: https://doi.org/10.1109/VTCSpring.2018.8417650
Roth, K., Pirzadeh, H., Swindlehurst, A.L. and Nossek, J.A. (2018) A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect csi. IEEE J. Sel. Topics Signal Processing 12(3): 484–498. doi:10.1109/JSTSP.2018.2813973. DOI: https://doi.org/10.1109/JSTSP.2018.2813973
Choi, J., Evans, B.L. and Gatherer, A. (2017) Resolution-adaptive hybrid MIMO architectures for millimeter wave communications. IEEE Trans. Signal Processing 65(23): 6201–6216. DOI: https://doi.org/10.1109/TSP.2017.2745440
Demir, A., Mehrotra, A. and Roychowdhury, J. (2000) Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Trans. Circuits Systems 47(5): 655–674. doi:10.1109/81.847872. DOI: https://doi.org/10.1109/81.847872
Ganesh, R.S., Jayakumari, J. and Akhila, I.P. (2011) Channel estimation analysis in MIMO-OFDM wireless systems. In Int. Conf. Signal Processing, Commun., Computing and Networking Tech.: 399–403. DOI: https://doi.org/10.1109/ICSCCN.2011.6024583
Alkhateeb, A., Ayach, O.E., Leus, G. and Heath, R.W. (2014) Channel estimation and Hybrid pre-coding for Millimeter wave cellular systems. IEEE J. Slected Topics in Signal Processing 8(5): 831–846. doi:10.1109/JSTSP.2014.2334278. DOI: https://doi.org/10.1109/JSTSP.2014.2334278
Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K. and Heath, R.W. (2017) Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1): 403–430. doi:10.1109/TCOMM.2016.2618794. DOI: https://doi.org/10.1109/TCOMM.2016.2618794
Ayach, O.E., Rajagopal, S., Abu-Surra, S., Pi, Z. and Heath, R.W. (2014) Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wireless Commun. 13(3): 1499–1513. doi:10.1109/TWC.2014.011714.130846. DOI: https://doi.org/10.1109/TWC.2014.011714.130846
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.