AgFAB - A Farmer-centered Agricultural Bower

Authors

DOI:

https://doi.org/10.4108/eetinis.v10i1.2714

Keywords:

Farmer-Centered, Agriculture, Human-Computer Interaction

Abstract

Digital Agriculture aims to raise agricultural productivity while empowering the farming stakeholders (especially the farmers) with the availability of ICT-based applications on smart devices. However, despite putting in much effort, smallholder farmers’ willingness for adopting digital technologies is low in developing countries. In this study, following the principles of the human-design process, we investigated the smallholder farmers’ core demands from mobile/computing application(s). Considering these core demands of the farming community, the developed prototypical interfaces were evaluated by farmers using the System Usability Scale (SUS) to check the acceptability of a proposed farmer-centered solution named AgFAB. The AgFAB prototypical interface design received an average SUS score of 72.37, which is an indication of an acceptable design. Moreover, the results of Paired T-test seem promising for the strong adoptability of AgFAB by farmers with reference to their aspect of usability in the agricultural context.

Downloads

Download data is not yet available.

References

Tang, S., Zhu, Q., Zhou, X., Liu, S. and Wu, M. (2002) A conception of digital agriculture. In IEEE international geoscience and remote sensing symposium (IEEE), 5: 3026–3028. DOI: https://doi.org/10.1109/IGARSS.2002.1026858

Friha, O., Ferrag, M.A., Shu, L., Maglaras, L.A. and Wang, X. (2021) Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies. IEEE CAA J. Autom. Sinica 8(4): 718–752. DOI: https://doi.org/10.1109/JAS.2021.1003925

Abbasi, R., Martinez, P. and Ahmad, R. (2022) The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agricultural Technology : 100042. DOI: https://doi.org/10.1016/j.atech.2022.100042

Mahant, M., Shukla, A., Dixit, S. and Patel, D.(2012) Uses of ict in agriculture. International Journal of Advanced Computer Research 2(1): 46. DOI: https://doi.org/10.7753/IJCATR0201.1007

Chakraborty, P. and Chakrabarti, D.K. (2008) A brief survey of computerized expert systems for crop protection being used in india. Progress in Natural Science 18(4): 469–473. DOI: https://doi.org/10.1016/j.pnsc.2008.01.001

Dix, A., Finlay, J., Abowd, G.D. and Beale, R. (2004) Human-computer interaction (Pearson Education).

Issa, T. and Isaias, P. (2015) Usability and human com-puter interaction (hci). In Sustainable design (Springer), 19–36. DOI: https://doi.org/10.1007/978-1-4471-6753-2_2

Woolgar, S. (1990) Configuring the user: the case of usability trials. The Sociological Review 38(1_suppl): 58–99. DOI: https://doi.org/10.1111/j.1467-954X.1990.tb03349.x

Miller, T., Howe, P. and Sonenberg, L. (2017) Explainable ai: Beware of inmates running the asylum or: How i learnt to stop worrying and love the social and behavioural sciences. arXiv preprint arXiv:1712.00547 .

Posadas, B.B., Hanumappa, M., Niewolny, K. and Gilbert, J.E. (2021) Design and evaluation of a crowdsourcing precision agriculture mobile application for lambsquarters, mission lq. Agronomy 11(10): 1951. DOI: https://doi.org/10.3390/agronomy11101951

Parker, C. and Sinclair, M. (2001) User-centred design does make a difference. the case of decision support systems in crop production. Behaviour & Information Technology 20(6): 449–460. DOI: https://doi.org/10.1080/01449290110089570

Lindblom, J., Lundström, C., Ljung, M. and Jonsson, A. (2017) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture 18(3): 309–331. DOI: https://doi.org/10.1007/s11119-016-9491-4

Ferrández-Pastor, F.J., García-Chamizo, J.M., Nieto-Hidalgo, M. and Mora-Martínez, J. (2018) Precision agriculture design method using a distributed comput-ing architecture on internet of things context. Sensors 18(6): 1731. DOI: https://doi.org/10.3390/s18061731

Ferrández-Pastor, F.J., García-Chamizo, J.M., Nieto Hidalgo, M. and Mora-Martínez, J. (2017) User-centered design of agriculture automation systems using internet of things paradigm. In International Conference on Ubiquitous Computing and Ambient Intelligence (Springer): 56–66. DOI: https://doi.org/10.1007/978-3-319-67585-5_7

Rose, D.C., Parker, C., Fodery, J., Park, C., Sutherland, W.J. and Dicks, L.V. (2018) Involving stakeholders in agricultural decision support systems: Improving user-centred design. International Journal of Agricultural Management 6(1029-2019-924): 80–89.

Kragt, M.E. and Llewellyn, R.S. (2014) Using a choice experiment to improve decision support tool design. Applied Economic Perspectives and Policy 36(2): 351–371. DOI: https://doi.org/10.1093/aepp/ppu001

Oliver, D.M., Bartie, P.J., Heathwaite, A.L., Pschetz, L. and Quilliam, R.S. (2017) Design of a decision support tool for visualising e. coli risk on agricultural land using a stakeholder-driven approach. Land Use Policy 66: 227–234. DOI: https://doi.org/10.1016/j.landusepol.2017.05.005

Rossi, V., Salinari, F., Poni, S., Caffi, T. and Bettati, T. (2014) Addressing the implementation problem in agricultural decision support systems: the example of vite. net®. Computers and Electronics in Agriculture 100: 88–99. DOI: https://doi.org/10.1016/j.compag.2013.10.011

Zaks, D.P. and Kucharik, C.J. (2011) Data and monitoring needs for a more ecological agriculture. Environmental Research Letters 6(1): 014017. DOI: https://doi.org/10.1088/1748-9326/6/1/014017

Marques, M.J.R. (2017) A mobile approach to farmer-computer interaction .

Stojanovic, V., Falconer, R.E., Isaacs, J., Blackwood, D., Gilmour, D., Kiezebrink, D. and Wilson, J. (2017) Streaming and 3d mapping of agri-data on mobile devices. Computers and Electronics in Agriculture 138: 188–199. DOI: https://doi.org/10.1016/j.compag.2017.03.019

Lundström, C. and Lindblom, J. (2018) Considering farmers’ situated knowledge of using agricultural decision support systems (agridss) to foster farming practices: The case of cropsat. Agricultural Systems 159: 9–20. DOI: https://doi.org/10.1016/j.agsy.2017.10.004

Falloon, P., Soares, M.B., Manzanas, R., San-Martin, D., Liggins, F., Taylor, I., Kahana, R. et al. (2018) The land management tool: Developing a climate service in southwest uk. Climate Services 9: 86–100. DOI: https://doi.org/10.1016/j.cliser.2017.08.002

Frías, M.D., Iturbide, M., Manzanas, R., Bedia, J., Fernández, J., Herrera, S., Cofiño, A.S. et al. (2018) An r package to visualize and communicate uncertainty in seasonal climate prediction. Environmental modelling & software 99: 101–110. DOI: https://doi.org/10.1016/j.envsoft.2017.09.008

Maiga, J., Suyoto, S. and Pranowo, P. (2021) Mobile app design for sustainable agriculture in mali-west africa. In IOP Conference Series: Materials Science and Engineering (IOP Publishing), 1098: 032037. DOI: https://doi.org/10.1088/1757-899X/1098/3/032037

Jokela, T., Iivari, N., Matero, J. and Karukka, M. (2003) The standard of user-centered design and the standard definition of usability: analyzing iso 13407 against iso 9241-11. In Proceedings of the Latin American conference on Human-computer interaction: 53–60. DOI: https://doi.org/10.1145/944519.944525

Turner, C.W., Lewis, J.R. and Nielsen, J. (2006) Determining usability test sample size. International encyclopedia of ergonomics and human factors 3(2): 3084–3088.

Sauro, J. (2011) How to find the right sample size for a usability test. Erişim adresi .

Brooke, J. et al. (1996) Sus-a quick and dirty usability scale. Usability evaluation in industry 189(194): 4–7.

Lewis, J.R. (2018) The system usability scale: past, present, and future. International Journal of Human–Computer Interaction 34(7): 577–590. DOI: https://doi.org/10.1080/10447318.2018.1455307

Downloads

Published

08-02-2023

How to Cite

Iqbal, M. A., Posadas, B. B., Qin, F., Liu, B., & Siddique, A. (2023). AgFAB - A Farmer-centered Agricultural Bower. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 10(1), e2. https://doi.org/10.4108/eetinis.v10i1.2714