Distributed Optimization Framework for Industry 4.0 Automated Warehouses
DOI:
https://doi.org/10.4108/eai.27-6-2018.155237Keywords:
Industry 4.0, Intelligent Robotic Agent, Distributed Optimization, Warehouse AutomationAbstract
Robotic automation is being increasingly proselytized in the industrial and manufacturing sectors to increase production efficiency. Typically, complex industrial tasks cannot be satisfied by individual robots, rather coordination and information sharing is required. Centralized robotic control and coordination is ill-advised in such settings, due to high failure probabilities, inefficient overheads and lack of scalability. In this paper, we model the interactions among robotic units using intelligent agent based interactions. As such agents behave autonomously, coordinating task/resource allocation is performed via distributed algorithms. We use the motivating example of warehouse inventory automation to optimally allocate and distribute delivery tasks among multiple robotic agents. The optimization is decomposed using primal and dual decomposition techniques to operate in minimal latency, minimal battery usage or maximal utilization scenarios.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.