Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

Authors

DOI:

https://doi.org/10.4108/eetinis.v10i4.4237

Keywords:

C-ITS, Cybersecurity, CAV, Cybersecurity Centre of Excellence, Cybersecurity Ecosystem, Threat Detection, Threat Mitigation

Abstract

The way we travel is changing rapidly and Cooperative Intelligent Transportation Systems (C-ITSs) are at the forefront of this evolution. However, the adoption of C-ITSs introduces new risks and challenges, making cybersecurity a top priority for ensuring safety and reliability. Building on this premise, this paper introduces an envisaged Cybersecurity Centre of Excellence (CSCE) designed to bolster researching, testing, and evaluating the cybersecurity of C-ITSs. We explore the design, functionality, and challenges of CSCE's testing facilities, outlining the technological, security, and societal requirements. Through a thorough survey and analysis, we assess the effectiveness of these systems in detecting and mitigating potential threats, highlighting their flexibility to adapt to future C-ITSs. Finally, we identify current unresolved challenges in various C-ITS domains, with the aim of motivating further research into the cybersecurity of C-ITSs.

Downloads

Download data is not yet available.

References

d’Orey, P.M. and Ferreira, M. (2014) ITS for Sustainable Mobility: A Survey on Applications and Impact Assessment Tools. IEEE Trans. Intell. Transp. Syst. 15(2): 477–493. doi:10.1109/TITS.2013.2287257. DOI: https://doi.org/10.1109/TITS.2013.2287257

Barreto, L., Amaral, A. and Baltazar, S. (2018) Urban Mobility Digitalization: Towards Mobility as a Service (MaaS). In Proc. of Int. Conf. Int. Sys.: 850–855. doi:10.1109/IS.2018.8710457. DOI: https://doi.org/10.1109/IS.2018.8710457

Mavromatis, I., Tassi, A., Rigazzi, G., Piechocki, R.J. and Nix, A. (2018) Multi-Radio 5G Architecture for Connected and Autonomous Vehicles: Application and Design Insights. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 4(13). doi:10.4108/eai.20-3-2018.154368. DOI: https://doi.org/10.4108/eai.20-3-2018.154368

Parkinson, S., Ward, P., Wilson, K. and Miller, J. (2017) Cyber Threats Facing Autonomous and Connected Vehicles: Future Challenges. IEEE Trans. Intell. Transp. Syst. 18(11): 2898–2915. doi:10.1109/TITS.2017.2665968. DOI: https://doi.org/10.1109/TITS.2017.2665968

Amanullah, M.A., Loke, S.W., Baruwal Chhetri, M. and Doss, R. (2023) A Taxonomy and Analysis of Misbehaviour Detection in Cooperative Intelligent Transport Systems: A Systematic Review. ACMComput. Surv. 56(1): 38. doi:10.1145/3596598. DOI: https://doi.org/10.1145/3596598

Pandey, M. and Seetharaman (2022) A Review of Factors Impacting Cybersecurity in Connected and Autonomous Vehicles (CAVs). In Proc. of CoDIT, 1: 1218–1224. doi:10.1109/CoDIT55151.2022.9804071. DOI: https://doi.org/10.1109/CoDIT55151.2022.9804071

Sedar, R., Kalalas, C., Vázquez-Gallego, F., Alonso, L. and Alonso-Zarate, J. (2023) A Comprehensive Survey of V2X Cybersecurity Mechanisms and Future Research Paths. IEEE Open J. Commun. Soc. 4: 325–391. doi:10.1109/OJCOMS.2023.3239115. DOI: https://doi.org/10.1109/OJCOMS.2023.3239115

Talebkhah, M., Sali, A., Gordan, M., Hashim, S.J. and Rokhani, F.Z. (2023) Comprehensive Review on Development of Smart Cities Using Industry 4.0 Technologies. IEEE Access 11: 91981–92030. doi:10.1109/ACCESS.2023.3302262. DOI: https://doi.org/10.1109/ACCESS.2023.3302262

Tassi, A., Mavromatis, I., Piechocki, R., Nix, A., Compton, C., Poole, T. and Schuster, W. (2019) Agile Data Offloading over Novel Fog Computing Infrastructure for CAVs. In Proc. of IEEE VTC2019-Spring: 1–6. doi:10.1109/VTCSpring.2019.8746302. DOI: https://doi.org/10.1109/VTCSpring.2019.8746302

Wen, L., Rickert, M., Pan, F., Lin, J. and Knoll, A. (2023) Bare-Metal vs. Hypervisors and Containers: Performance Evaluation of Virtualization Technologies for Software-Defined Vehicles. In Proc. of IEEE IV: 1–8. doi:10.1109/IV55152.2023.10186789. DOI: https://doi.org/10.1109/IV55152.2023.10186789

Kemp, G., Vargas-Solar, G., Da Silva, C.F., Ghodous, P., Collet, C. and Amaya, P.L. (2015) Towards Cloud Big Data Services for Intelligent Transport. In Proc. of ISPE ICCE, 2: 377 – 385. doi:10.3233/978-1-61499-544-9-377.

(2021) Road Vehicles — Cybersecurity Engineering. Standard, International Organization for Standardization.

Roberts, A., Maennel, O. and Snetkov, N. (2021) Cybersecurity Test Range for Autonomous Vehicle Shuttles. In Proc. of IEEE EuroS&PW: 239–248. doi:10.1109/EuroSPW54576.2021.00031. DOI: https://doi.org/10.1109/EuroSPW54576.2021.00031

Maple, C., Bradbury, M., Le, A.T. and Ghirardello, K. (2019) A Connected and Autonomous Vehicle Reference Architecture for Attack Surface Analysis. Applied Sciences 9(23). doi:10.3390/app9235101. DOI: https://doi.org/10.3390/app9235101

Dominic, D., Chhawri, S., Eustice, R.M., Ma, D. and Weimerskirch, A. (2016) Risk Assessment for Cooperative Automated Driving. In Proc. of ACM Workshop on CPS-SPC (Association for Computing Machinery): 47–58. doi:10.1145/2994487.2994499. DOI: https://doi.org/10.1145/2994487.2994499

(2023) Architecture Reference for Cooperative and Intelligent Transportation. Tech. report, United States Department of Transport.

Gupta, S., Maple, C. and Passerone, R. (2023) An Investigation of Cyber-Attacks and Security Mechanisms for Connected and Autonomous Vehicles. IEEE Access 11: 90641–90669. doi:10.1109/ACCESS.2023.3307473. DOI: https://doi.org/10.1109/ACCESS.2023.3307473

Fang, Y., Shan, Z. and Wang, W. (2021) Modeling and Key Technologies of a Data-Driven Smart City System. IEEE Access 9: 91244–91258. doi:10.1109/ACCESS.2021.3091716. DOI: https://doi.org/10.1109/ACCESS.2021.3091716

Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H. and Zedan, H. (2014) A Comprehensive Survey on Vehicular Ad Hoc Network. J. Netw. Comput. Appl. : 380–392doi:10.1016/j.jnca.2013.02.036. DOI: https://doi.org/10.1016/j.jnca.2013.02.036

González, D., Pérez, J., Milanés, V. and Nashashibi, F. (2016) A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 17(4): 1135–1145. doi:10.1109/TITS.2015.2498841. DOI: https://doi.org/10.1109/TITS.2015.2498841

Malik, R.Q., Ramli, K.N., Kareem, Z.H., Habelalmatee, M.I., Abbas, A.H. and Alamoody, A. (2020) An Overview on V2P Communication System: Architecture and Application. In Proc. of IICETA: 174–178. doi:10.1109/IICETA50496.2020.9318863. DOI: https://doi.org/10.1109/IICETA50496.2020.9318863

(2018) Intelligent transport systems — Cooperative ITS— Part 1: Roles and responsibilities in the context of co-operative ITS architecture(s). Standard, International Organization for Standardization.

Mavromatis, I., Sanchez-Mompo, A., Raimondo, F., Pope, J., Bullo, M., Weeks, I., Kumar, V. et al. (2023) LE3D: A Lightweight Ensemble Framework of Data Drift Detectors for Resource-Constrained Devices. In Proc. of IEEE CCNC: 611–619. doi:10.1109/CCNC51644.2023.10060415. DOI: https://doi.org/10.1109/CCNC51644.2023.10060415

Mavromatis, I. and Khan, A. (2023) Demo: LE3D: A Privacy-preserving Lightweight Data Drift Detection Framework. In Proc. of IEEE CCNC. doi:10.1109/CCNC51644.2023.10060554. DOI: https://doi.org/10.1109/CCNC51644.2023.10060554

Kuppa, A. and Le-Khac, N.A. (2022) Learn to Adapt: Robust Drift Detection in Security Domain. Comput. Electr. Eng. 102. doi:10.1016/j.compeleceng.2022.108239. DOI: https://doi.org/10.1016/j.compeleceng.2022.108239

Huq, N., Vosseler, R. and Swimmer, M. (2018) Cyberattacks against Intelligent Transportation Systems: Assessing Future Threats to ITS. Tech. rep. URL https://documents. trendmicro.com/assets/white_papers/ wp-cyberattacks-against-intelligent-transportation-systems.pdf.

Huq, N., Vosseler, R. and Swimmer, M. (2018) Cyberattacks against Intelligent Transportation Systems: Assessing Future Threats to ITS. Tech. report, TrendLabs.

Sakiz, F. and Sen, S. (2017) A Survey of Attacks and Detection Mechanisms on Intelligent Transportation Systems: VANETs and IoV. Ad Hoc Networks 61: 33–50. doi:https://doi.org/10.1016/j.adhoc.2017.03.006.

Miller, C. (2019) Lessons Learned from Hacking a Car. IEEE Design & Test 36(6): 7–9. doi:10.1109/MDAT.2018.2863106. DOI: https://doi.org/10.1109/MDAT.2018.2863106

Zhao, C., Gill, J.S., Pisu, P. and Comert, G. (2022) Detection of False Data Injection Attack in Connected and Automated Vehicles via Cloud-Based Sandboxing. IEEE Trans. Intell. Transp. Syst. 23(7): 9078–9088. doi:10.1109/TITS.2021.3090361. DOI: https://doi.org/10.1109/TITS.2021.3090361

Dasgupta, S., Rahman, M., Islam, M. and Chowdhury, M. (2022) A Sensor Fusion-Based GNSS Spoofing Attack Detection Framework for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 23(12): 23559–23572. doi:10.1109/TITS.2022.3197817. DOI: https://doi.org/10.1109/TITS.2022.3197817

Ghosal, A., Halder, S. and Conti, M. (2020) STRIDE: Scalable and Secure Over-The-Air Software Update Scheme for Autonomous Vehicles. In Proc. of IEEE ICC: 1–6. doi:10.1109/ICC40277.2020.9148649. DOI: https://doi.org/10.1109/ICC40277.2020.9148649

Abhishek, N.V., Aman, M.N., Lim, T.J. and Sikdar, B. (2022) DRiVe: Detecting Malicious Roadside Units in the Internet of Vehicles With Low Latency Data Integrity. IEEE Internet Things J. 9(5): 3270–3281. doi:10.1109/JIOT.2021.3097809. DOI: https://doi.org/10.1109/JIOT.2021.3097809

(2017) Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT). Tech. rep., U.S. Department of Transportation.

Jolfaei, A. and Kant, K. (2019) Privacy and Security of Connected Vehicles in Intelligent Transportation System. In Proc. of IEEE/IFIP DSN-S: 9–10. doi:10.1109/DSN-S.2019.00010. DOI: https://doi.org/10.1109/DSN-S.2019.00010

Beckmann, H., Kropp, V. and Eissfeller, B. (2014) New Integrity Concept for Intelligent Transportation Systems (ITS) for Safety of Live (SoL) Applications. In Proc. of IEEE/ION PLANS: 982–988. doi:10.1109/PLANS.2014.6851463. DOI: https://doi.org/10.1109/PLANS.2014.6851463

Li,W., Xiao-ning, Z. and Zheng-yu, X. (2010) Research on Traffic Information Demand and Supply Analysis of Comprehensive Traffic Information Platform. In Proc. of Third International Symposium on Information Processing: 384–388. doi:10.1109/ISIP.2010.64. DOI: https://doi.org/10.1109/ISIP.2010.64

(2018) ETSI TS 102 941: Trust and Privacy Management. Standard, European Standards Organization (ESO).

Maaloul, S., Aniss, H., Kassab, M. and Berbineau, M. (2021) Classification of C-ITS Services in Vehicular Environments. IEEE Access 9: 117868–117879. doi:10.1109/ACCESS.2021.3105815. DOI: https://doi.org/10.1109/ACCESS.2021.3105815

Baldini, G. (2018) Testing and Certification of Automated Vehicles (AV) Including Cybersecurity and Artificial Intelligence Aspects. Tech. report, Joint Research Centre (JRC).

Beck, F., Lahmadi, A. and François, J. (2021) HSL: a Cyber Security Research Facility for Sensitive Data Experiments. In Proc. of IFIP/IEEE Int. Symp. on IM: 956–961.

Kose, Y., Ozer, M., Bastug, M., Varlioglu, S., Basibuyuk, O. and Ponnakanti, H.P. (2021) Developing Cybersecurity Workforce: Introducing CyberSec Labs for Industry Standard Cybersecurity Training. In Proc. of CSCI: 716–721. doi:10.1109/CSCI54926.2021.00184. DOI: https://doi.org/10.1109/CSCI54926.2021.00184

Schoitsch, E. and Schmittner, C. (2020) Ongoing Cybersecurity and Safety Standardization Activities Related to Highly Automated/Autonomous Vehicles. In Zachäus, C. and Meyer, G. [eds.] Proc. of AMAA: 72–86. DOI: https://doi.org/10.1007/978-3-030-65871-7_6

Rathore, R.S., Hewage, C., Kaiwartya, O. and Lloret, J. (2022) In-Vehicle Communication Cyber Security: Challenges and Solutions. Sensors 22(17). doi:10.3390/s22176679. DOI: https://doi.org/10.3390/s22176679

Ivanov, I., Maple, C., Watson, T. and Lee, S. (2018) Cyber security standards and issues in V2X communications for Internet of Vehicles. In Proc. of Living in the Internet of Things: Cybersecurity of the IoT: 1–6. doi:10.1049/cp.2018.0046. DOI: https://doi.org/10.1049/cp.2018.0046

Thonhofer, E., Sigl, S., Fischer, M., Heuer, F., Kuhn, A., Erhart, J., Harrer, M. et al. (2023) Infrastructure-Based Digital Twins for Cooperative, Connected, Automated Driving and Smart Road Services. IEEE Trans. Intell. Transp. Syst. 4: 311–324. doi:10.1109/OJITS.2023.3266800. DOI: https://doi.org/10.1109/OJITS.2023.3266800

Polese, M., Bonati, L., D’Oro, S., Basagni, S. and Melodia, T. (2023) Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE Commun. Surveys Tuts. 25(2): 1376–1411. doi:10.1109/COMST.2023.3239220. DOI: https://doi.org/10.1109/COMST.2023.3239220

Gannon, D., Barga, R. and Sundaresan, N. (2017) Cloud-Native Applications. IEEE Cloud Computing 4(5): 16–21. doi:10.1109/MCC.2017.4250939. DOI: https://doi.org/10.1109/MCC.2017.4250939

Nakata, R. and Otsuka, A. (2021) CyExec*: A High-Performance Container-Based Cyber Range With Scenario Randomization. IEEE Access 9: 109095–109114. doi:10.1109/ACCESS.2021.3101245. DOI: https://doi.org/10.1109/ACCESS.2021.3101245

Sikorski, M. and Honig, A. (2012) Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software (No Starch Press). doi:10.5555/2181153.

Aslan, O.A. and Samet, R. (2020) A Comprehensive Review on Malware Detection Approaches. IEEE Access 8: 6249–6271. doi:10.1109/ACCESS.2019.2963724. DOI: https://doi.org/10.1109/ACCESS.2019.2963724

Sethi, K., Kumar, R., Sethi, L., Bera, P. and Patra, P.K. (2019) A Novel Machine Learning Based Malware Detection and Classification Framework. In Proc. of Int. Conf. Cyber Secur: 1–4. doi:10.1109/CyberSecPODS.2019.8885196. DOI: https://doi.org/10.1109/CyberSecPODS.2019.8885196

Griffin, K., Schneider, S., Hu, X. and Chiueh, T.c. (2009) Automatic Generation of String Signatures for Malware Detection. In Proc. of RAID (Springer Berlin Heidelberg): 101–120. doi:10.1007/978-3-642-04342-0_6. DOI: https://doi.org/10.1007/978-3-642-04342-0_6

Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P. and Venkatraman, S. (2019) Robust Intelligent Malware Detection Using Deep Learning. IEEE Access 7: 46717–46738. doi:10.1109/ACCESS.2019.2906934. DOI: https://doi.org/10.1109/ACCESS.2019.2906934

Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A. (2009) A Detailed Analysis of the KDD CUP 99 data set. In Proc. of IEEE Symposium on CISDA: 1–6. doi:10.1109/CISDA.2009.5356528. DOI: https://doi.org/10.1109/CISDA.2009.5356528

Anderson, H.S. and Roth, P. (2018) EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. arXiv .

Akter, M.S., Shahriar, H. and Bhuiya, Z.A. (2023) Automated Vulnerability Detection in Source Code Using Quantum Natural Language Processing. In Wang, G., Choo, K.K.R., Wu, J. and Damiani, E. [eds.] Proc. of Ubiquitous Security (Springer Nature Singapore): 83–102. doi:10.1007/978-981-99-0272-9_6. DOI: https://doi.org/10.1007/978-981-99-0272-9_6

Schaad, A. and Binder, D. (2023) Deep-Learning-Based Vulnerability Detection in Binary Executables. In Jourdan, G.V., Mounier, L., Adams, C., Sèdes, F. and Garcia-Alfaro, J. [eds.] Proc. of Foundations and Practice of Security (Springer Nature Switzerland): 453–460. doi:10.1007/978-3-031-30122-3_28. DOI: https://doi.org/10.1007/978-3-031-30122-3_28

Zizzo, G., Hankin, C., Maffeis, S. and Jones, K. (2019) Adversarial Machine Learning Beyond the Image Domain. In Proc. of DAC 2019 (Association for Computing Machinery). doi:10.1145/3316781.3323470. DOI: https://doi.org/10.1145/3316781.3323470

(2022) Information Security Management Systems. Standard, International Organization for Standardization.

Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D. and Rashid, A. (2017) Pains, Gains and PLCs: Ten Lessons from Building an Industrial Control Systems Testbed for Security Research. In Proc. of CSET.

Sommer, C., German, R. and Dressler, F. (2011) Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Trans. Mob. Comput. 10(1): 3–15. doi:10.1109/TMC.2010.133. DOI: https://doi.org/10.1109/TMC.2010.133

Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.P., Hilbrich, R., Lücken, L. et al. (2018) Microscopic traffic simulation using sumo. In Proc. of ITSC: 2575–2582. doi:10.1109/ITSC.2018.8569938. DOI: https://doi.org/10.1109/ITSC.2018.8569938

(2019) Cybersecurity and Intelligent Transportation Systems: A Best Practice Guide. Tech. rep., U.S. Department of Transportation. URL https://rosap. ntl.bts.gov/view/dot/42461.

(2010) Open Source Security Testing Methodology Manual (OSSTMM). Tech. rep., Institute for Security and Open Methodologies (ISECOM). URL https://www.isecom.org/OSSTMM.3.pdf.

Straub, J. (2020) Modeling Attack, Defense and Threat Trees and the Cyber Kill Chain, ATT‘I&’CK and STRIDE Frameworks as Blackboard Architecture Networks. In Proc. of IEEE SmartCloud: 148–153. doi:10.1109/SmartCloud49737.2020.00035. DOI: https://doi.org/10.1109/SmartCloud49737.2020.00035

Sakiz, F. and Sen, S. (2017) A Survey of Attacks and Detection Mechanisms on Intelligent Transportation Systems. Ad Hoc Netw. 61: 33–50. doi:10.1016/j.adhoc.2017.03.006. DOI: https://doi.org/10.1016/j.adhoc.2017.03.006

Nickerson, C., Kennedy, D., Smith, E., Rabie, A., Friedli, S., Searle, J., Knight, B. et al. (2014) Penetration Testing Execution Standard. Standard.

Blinowski, G., Ojdowska, A. and Przybyłek, A. (2022) Monolithic vs. Microservice Architecture: A Performance and Scalability Evaluation. IEEE Access 10: 20357–20374. doi:10.1109/ACCESS.2022.3152803. DOI: https://doi.org/10.1109/ACCESS.2022.3152803

Rusti, B., Stefanescu, H., Iordache, M., Ghenta, J., Brezeanu, C. and Patachia, C. (2019) Deploying Smart City Components for 5G Network Slicing. In Proc. of EuCNC: 149–154. doi:10.1109/EuCNC.2019.8802054. DOI: https://doi.org/10.1109/EuCNC.2019.8802054

Farnham, T.D., Jones, S., Aijaz, A., Jin, Y., Mavromatis, I., Raza, U., Portelli, A. et al. (2021) UMBRELLA Collaborative Robotics Testbed and IoT Platform. In Proc. of IEEE RoboCom. doi:10.1109/CCNC49032.2021.9369615. DOI: https://doi.org/10.1109/CCNC49032.2021.9369615

Büch, D. and Esch, M. (2023) CiTe: A Testbed for Smart City Applications and Architectures. In Proc. of IEEE COINS: 1–6. doi:10.1109/COINS57856.2023.10189229. DOI: https://doi.org/10.1109/COINS57856.2023.10189229

Moravcik, M. and Kontsek, M. (2020) Overview of Docker Container Orchestration Tools. In Proc. of ICETA: 475–480. doi:10.1109/ICETA51985.2020.9379236. DOI: https://doi.org/10.1109/ICETA51985.2020.9379236

Yang, S., Ren, Y., Zhang, J., Guan, J. and Li, B. (2021) KubeHICE: Performance-aware Container Orchestration on Heterogeneous-ISA Architectures in Cloud-Edge Platforms. In Proc. of IEEE ISPA/BDCloud/SocialCom/SustainCom: 81–91. doi:10.1109/ISPA-BDCloud-SocialComSustainCom52081.2021.00025. DOI: https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00025

Böhm, S. and Wirtz, G. (2022) Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures. EAI Endorsed Trans. Smart Cities 6(18). doi:10.4108/eetsc.v6i18.1197. DOI: https://doi.org/10.4108/eetsc.v6i18.1197

Santos, J., Wauters, T., Volckaert, B. and De Turck, F. (2019) Towards Network-Aware Resource Provisioning in Kubernetes for Fog Computing Applications. In Proc. of IEEE NetSoft: 351–359. doi:10.1109/NETSOFT.2019.8806671. DOI: https://doi.org/10.1109/NETSOFT.2019.8806671

McGrath, G. and Brenner, P.R. (2017) Serverless Computing: Design, Implementation, and Performance. In Proc. of IEEE ICDCSW: 405–410. doi:10.1109/ICDCSW.2017.36. DOI: https://doi.org/10.1109/ICDCSW.2017.36

Ghaffari, F. and Arabsorkhi, A. (2018) A New Adaptive Cyber-security Capability Maturity Model. In Proc. of IST: 298–304. doi:10.1109/ISTEL.2018.8661018. DOI: https://doi.org/10.1109/ISTEL.2018.8661018

Selamat, A., Marican, M.N.Y., Othman, S.H. and Razak, S.A. (2022) An End-To-End Cyber Security Maturity Model For Technology Startups. In Proc. of IEEE ICOCO: 185–190. doi:10.1109/ICOCO56118.2022.10031900. DOI: https://doi.org/10.1109/ICOCO56118.2022.10031900

Marican, M.N.Y., Razak, S.A., Selamat, A. and Othman, S.H. (2023) Cyber Security Maturity Assessment Framework for Technology Startups: A Systematic Literature Review. IEEE Access 11: 5442–5452. doi:10.1109/ACCESS.2022.3229766. DOI: https://doi.org/10.1109/ACCESS.2022.3229766

Bartwal, U., Mukhopadhyay, S., Negi, R. and Shukla, S. (2022) Security Orchestration, Automation, and Response Engine for Deployment of Behavioural Honeypots. In Proc. of IEEE DSC: 1–8. doi:10.1109/DSC54232.2022.9888808. DOI: https://doi.org/10.1109/DSC54232.2022.9888808

Andrade, R.O., Yoo, S.G., Tello-Oquendo, L. and Ortiz-Garcés, I. (2020) A Comprehensive Study of the IoT Cybersecurity in Smart Cities. IEEE Access 8: 228922–228941. doi:10.1109/ACCESS.2020.3046442. DOI: https://doi.org/10.1109/ACCESS.2020.3046442

Liu, Q., Qi, X., Liu, S., Cheng, X., Ke, X. and Wang, F. (2022) Application of Lightweight Digital Twin System in Intelligent Transportation. IEEE J. Radio Freq. Identif. 6: 729–732. doi:10.1109/JRFID.2022.3212169. DOI: https://doi.org/10.1109/JRFID.2022.3212169

Mavromatis, I., Piechocki, R., Sooriyabandara, M. and Parekh, A. (2020) DRIVE: A Digital Network Oracle for Cooperative Intelligent Transportation Systems. In Proc. of IEEE ISCC. doi:10.1109/ISCC50000.2020.9219683. DOI: https://doi.org/10.1109/ISCC50000.2020.9219683

Feldmann, S., Kernschmidt, K. and Vogel-Heuser, B. (2014) Combining a SysML-based Modeling Approach and Semantic Technologies for Analyzing Change Influences in Manufacturing Plant Models. Procedia CIRP 17: 451 – 456. doi:10.1016/j.procir.2014.01.140. DOI: https://doi.org/10.1016/j.procir.2014.01.140

Walla, W. and Kiefer, J. (2011) Life Cycle Engineering – Integration of New Products on Existing Production Systems in Automotive Industry. In Hesselbach, J. and Herrmann, C. [eds.] Proc. of Glocalized Solutions for Sustainability in Manufacturing: 207–212. doi:10.1007/978-3-642-19692-8_36. DOI: https://doi.org/10.1007/978-3-642-19692-8_36

Nie, L., Wang, X., Zhao, Q., Shang, Z., Feng, L. and Li, G. (2023) Digital Twin for Transportation Big Data: A Reinforcement Learning-Based Network Traffic Prediction Approach. IEEE Trans. Intell. Transp. Syst. : 1–11doi:10.1109/TITS.2022.3232518. DOI: https://doi.org/10.1109/TITS.2022.3232518

(2018) ETSI TS 102 940: ITS communications security architecture and security management . Tech. rep., European Standards Organization (ESO).

(2012) ETSI TS 102 942: Intelligent Transport Systems (ITS) Security - Access Control. Tech. rep.

Festag, A., Noecker, G., Strassberger, M., Lübke, A., Bochow, B., Torrent-Moreno, M., Schnaufer, S. et al. (2008) Network on Wheels: Project Objectives, Technology and Achievements. In Proc. of IEEE/IFIP DSN-S: 9–10.

(2020) ETSI TS 133 501: Security architecture and procedures for 5G System. Tech. rep.

(2023) 3GPP 33.501: Security Architecture and Procedures for 5G System. Tech. rep.

Haider, S., Khalil, W., Al-Shamayleh, A.S., Akhunzada, A. and Gani, A. (2023) Risk Factors and Practices for the Development of Open Source Software From Developers’ Perspective. IEEE Access 11: 63333–63350. doi:10.1109/ACCESS.2023.3267048. DOI: https://doi.org/10.1109/ACCESS.2023.3267048

Wen, S.F. (2017) Software Security in Open Source Development: A Systematic Literature Review. In Proc. of FRUCT: 364–373. doi:10.23919/FRUCT.2017.8250205. DOI: https://doi.org/10.23919/FRUCT.2017.8250205

(2022) Software Assurance Maturity Model: A Guide to Building Security into Software Development. Tech. rep.

Kengo Oka, D. (2021) Software Composition Analysis in the Automotive Industry, 91–110. doi:10.1002/9781119710783.ch6. DOI: https://doi.org/10.1002/9781119710783.ch6

(2018) Certificate Policy for Deployment and Operation of European Cooperative Intelligent Transport Systems (C-ITS) Phase 2,". Tech. rep.

(2021) ETSI TS 103 097: Security header and certificate formats. Tech. rep., European Standards Organization (ESO).

Lu, M., Blokpoel, R., Fünfrocken, M. and Castells, J. (2018) Open Architecture for Internet-based C-ITS Services. In Proc. of ITSC: 7–13. doi:10.1109/ITSC.2018.8569941. DOI: https://doi.org/10.1109/ITSC.2018.8569941

Petit, J., Schaub, F., Feiri, M. and Kargl, F. (2015) Pseudonym Schemes in Vehicular Networks: A Survey. IEEE Commun. Surv. Tuto. 17(1): 228–255. doi:10.1109/COMST.2014.2345420. DOI: https://doi.org/10.1109/COMST.2014.2345420

Mahmoud, M.M.E.A., Mišić, J., Akkaya, K. and Shen, X. (2015) Investigating Public-Key Certificate Revocation in Smart Grid. IEEE Internet Things J. 2(6): 490–503. doi:10.1109/JIOT.2015.2408597. DOI: https://doi.org/10.1109/JIOT.2015.2408597

Kumar, N., Iqbal, R., Misra, S. and Rodrigues, J.J. (2015) An Intelligent Approach for Building a Secure Decentralized Public Key Infrastructure in VANET. J. Comput Syst. Sci. 81(6): 1042–1058. doi:10.1016/j.jcss.2014.12.016. DOI: https://doi.org/10.1016/j.jcss.2014.12.016

Torkura, K.A., Sukmana, M.I., Cheng, F. and Meinel, C. (2017) Leveraging Cloud Native Design Patterns for Security-as-a-Service Applications. In Proc. of IEEE SmartCloud: 90–97. doi:10.1109/SmartCloud.2017.21. DOI: https://doi.org/10.1109/SmartCloud.2017.21

Lozano, S., Lugo, T. and Carretero, J. (2023) A Comprehensive Survey on the Use of Hypervisors in Safety-Critical Systems. IEEE Access 11: 36244–36263. doi:10.1109/ACCESS.2023.3264825. DOI: https://doi.org/10.1109/ACCESS.2023.3264825

Sultan, S., Ahmad, I. and Dimitriou, T. (2019) Container Security: Issues, Challenges, and the Road Ahead. IEEE Access 7: 52976–52996. doi:10.1109/ACCESS.2019.2911732. DOI: https://doi.org/10.1109/ACCESS.2019.2911732

Teppo, P. and Norrman, K. (2018) Security in 5G RAN and core deployments. Tech. rep., The Ericsson Research Foundation. URL https://www.ericsson.com/en/reports-and-papers/white-papers/security-in-5g-ran-and-core-deployments.

Díaz-Rojas, J.A., Ocharán-Hernández, J.O., Pérez-Arriaga, J.C. and Limón, X. (2021) Web API Security Vulnerabilities and Mitigation Mechanisms: A Systematic Mapping Study. In Proc. of CONISOFT: 207–218. doi:10.1109/CONISOFT52520.2021.00036. DOI: https://doi.org/10.1109/CONISOFT52520.2021.00036

Pope, J., Raimondo, F., Kumar, V., McConville, R., Piechocki, R., Oikonomou, G., Pasquier, T. et al. (2021) Container Escape Detection for Edge Devices. In Proc. of ACM SenSys: 532–536. doi:10.1145/3485730.3494114. DOI: https://doi.org/10.1145/3485730.3494114

Li, X., Leng, X. and Chen, Y. (2023) Securing Serverless Computing: Challenges, Solutions, and Opportunities. IEEE Network 37(2): 166–173. doi:10.1109/MNET.005.2100335. DOI: https://doi.org/10.1109/MNET.005.2100335

Chatzimichali, A. and Chrysostomou, D. (2019) Human-data Interaction and User Rights at the Personal Robot Era. In Proc. of ICRES.

(2018) Regulation (EU) 2018/1807 of the European Parliament and of the Council on a framework for the free flow of non-personal data in the European Union. Tech. rep., European Union.

Fysarakis, K., Askoxylakis, I.G., Katos, V., Ioannidis, S. and Marinos, L. (2017) Security Concerns in Cooperative Intelligent Transportation Systems (Taylor & Francis Group). doi:10.1201/b21885-16. DOI: https://doi.org/10.1201/b21885-16

Torok, A., Szalay, Z. and Saghi, B. (2022) New Aspects of Integrity Levels in Automotive Industry-Cybersecurity of Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 23(1): 383–391. doi:10.1109/TITS.2020.3011523. DOI: https://doi.org/10.1109/TITS.2020.3011523

(2021) Safety of Machinery. Standard, International Electrotechnical Commission.

Sadique, F., Cheung, S., Vakilinia, I., Badsha, S. and Sengupta, S. (2018) Automated Structured Threat Information Expression (STIX) Document Generation with Privacy Preservation. In Proc. of IEEE UEMCON: 847–853. doi:10.1109/UEMCON.2018.8796822. DOI: https://doi.org/10.1109/UEMCON.2018.8796822

Roy, S., Panaousis, E., Noakes, C., Laszka, A., Panda, S. and Loukas, G. (2023) SoK: The MITRE ATT&CK Framework in Research and Practice. Arxiv .

Downloads

Published

02-01-2024

How to Cite

Mavromatis, I., Spyridopoulos, T., Carnelli, P., Chin, W. H., Khalil, A., Chakravarty, J., Cipolina Kun, L., Piechocki, R. J., Robbins, C., Cunnington, D., Chase, L., Chiazor, L., Preston, C., Rahul, & Khan, A. (2024). Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 10(4), e5. https://doi.org/10.4108/eetinis.v10i4.4237

Funding data