An Efficient Method for BLE Indoor Localization Using Signal Fingerprint
DOI:
https://doi.org/10.4108/eetinis.v12i1.6571Keywords:
Indoor Localization, Fingerprint, Bluetooth Low Energy, AutoencoderAbstract
The rise of Bluetooth Low Energy (BLE) technology has opened new possibilities for indoor localization systems. However, extracting fingerprint features from the Received Signal Strength Indicator (RSSI) of BLE signals often encounters challenges due to significant errors and fluctuations. This research proposes an approach that integrates signal filtering and deep learning techniques to improve accuracy and stability. A Kalman filter is employed to smooth the RSSI values, while Autoencoder and Convolutional Autoencoder models are utilized to extract distinctive fingerprint features. The system compares random test points with a reference database using normalized cross-correlation. Performance is assessed based on metrics such as the number of reference points with the highest cross-correlation (), average localization error, and other statistical indicators. Experimental results show that the combination of the Kalman filter with the Convolutional Autoencoder model achieves an average error of 0.98 meters with . These findings indicate that this approach effectively reduces signal noise and enhances localization accuracy in indoor environments.
Downloads
References
[1] Leitch, S. G., Ahmed, Q. Z., Abbas, W. B., Hafeez, M., Laziridis, P. I., Sureephong, P., & Alade, T. (2023). On indoor localization using WiFi, BLE, UWB, and IMU technologies. Sensors, 23(20), 8598. https://doi.org/10.3390/s23208598 DOI: https://doi.org/10.3390/s23208598
[2] J, N. S. C., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022). Indoor Positioning System: A Review. International Journal of Advanced Computer Science and Applications, 13(6). https://doi.org/10.14569/ijacsa.2022.0130659 DOI: https://doi.org/10.14569/IJACSA.2022.0130659
[3] Z. Zuo, L. Liu, L. Zhang, and Y. Fang, “Indoor Positioning Based on Bluetooth Low-Energy Beacons Adopting Graph Optimization,” Sensors, vol. 18, no. 11, Art. no. 11, Nov. 2018, doi: 10.3390/s18113736. DOI: https://doi.org/10.3390/s18113736
[4] P. Martins, M. Abbasi, F. Sa, J. Celiclio, F. Morgado, and F. Caldeira, “Intelligent beacon location and fingerprinting,” Procedia Comput. Sci., vol. 151, pp. 9–16, Jan. 2019, doi: 10.1016/j.procs.2019.04.005. DOI: https://doi.org/10.1016/j.procs.2019.04.005
[5] S. Subedi, H.-S. Gang, N. Y. Ko, S.-S. Hwang, and J.-Y. Pyun, “Improving Indoor Fingerprinting Positioning With Affinity Propagation Clustering and Weighted Centroid Fingerprint,” IEEE Access, vol. 7, pp. 31738–31750, 2019, doi: 10.1109/ACCESS.2019.2902564. DOI: https://doi.org/10.1109/ACCESS.2019.2902564
[6] M. Li, L. Zhao, D. Tan, and X. Tong, “BLE Fingerprint Indoor Localization Algorithm Based on Eight-Neighborhood Template Matching,” Sensors, vol. 19, no. 22, p. 4859, Nov. 2019, doi: 10.3390/s19224859. DOI: https://doi.org/10.3390/s19224859
[7] L. Batistić and M. Tomic, “Overview of indoor positioning system technologies,” in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 0473–0478. doi: 10.23919/MIPRO.2018.8400090. DOI: https://doi.org/10.23919/MIPRO.2018.8400090
[8] L. Ma, M. Liu, H. Wang, Y. Yang, N. Wang, and Y. Zhang, “WallSense: Device-Free Indoor Localization Using Wall-Mounted UHF RFID Tags,” Sensors, vol. 19, no. 1, Art. no. 1, Jan. 2019, doi: 10.3390/s19010068. DOI: https://doi.org/10.3390/s19010068
[9] W. Guan, S. Wen, H. Zhang, and L. Liu, “A Novel Three-dimensional Indoor Localization Algorithm Based on Visual Visible Light Communication Using Single LED,” in 2018 IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Nov. 2018, pp. 202–208. doi: 10.1109/AUTEEE.2018.8720798. DOI: https://doi.org/10.1109/AUTEEE.2018.8720798
[10] S. Amirisoori, S. Mohd Daud, N. A. Ahmad, S. Natasha, N. Sa’at, and N. Noor, “WI-FI Based Indoor Positioning Using Fingerprinting Methods (KNN Algorithm) in Real Environment,” Int. J. Future Gener. Commun. Netw., vol. 10, pp. 23–36, Sep. 2017, doi: 10.14257/ijfgcn.2017.10.9.03. DOI: https://doi.org/10.14257/ijfgcn.2017.10.9.03
[11] A. E. M. E. Ashry and B. I. Sheta, “Wi-Fi based indoor localization using trilateration and fingerprinting methods,” IOP Conf. Ser. Mater. Sci. Eng., vol. 610, no. 1, p. 012072, Sep. 2019, doi: 10.1088/1757-899X/610/1/012072. DOI: https://doi.org/10.1088/1757-899X/610/1/012072
[12] T.-M. T. Dinh, N.-S. Duong, and K. Sandrasegaran, “Smartphone-Based Indoor Positioning Using BLE iBeacon and Reliable Lightweight Fingerprint Map,” IEEE Sens. J., vol. 20, no. 17, pp. 10283–10294, Sep. 2020, doi: 10.1109/JSEN.2020.2989411. DOI: https://doi.org/10.1109/JSEN.2020.2989411
[13] A. Riady and G. P. Kusuma, “Indoor positioning system using hybrid method of fingerprinting and pedestrian dead reckoning,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 7101–7110, Oct. 2022, doi: 10.1016/j.jksuci.2021.09.005. DOI: https://doi.org/10.1016/j.jksuci.2021.09.005
[14] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960, doi: 10.1115/1.3662552. DOI: https://doi.org/10.1115/1.3662552
[15] B. Alsadik, “Chapter 10 - Kalman Filter,” in Adjustment Models in 3D Geomatics and Computational Geophysics, vol. 4, B. Alsadik, Ed., in Computational Geophysics, vol. 4. , Elsevier, 2019, pp. 299–326. doi: 10.1016/B978-0-12-817588-0.00010-6. DOI: https://doi.org/10.1016/B978-0-12-817588-0.00010-6
[16] M. George and K. Vadivukkarasi, “Kalman filtering for RSSI based localization system in wireless sensor networks,” vol. 10, pp. 16429–16440, Jan. 2015.
[17] A. Kargar-Barzi, E. Farahmand, A. Mahani, and M. Shafique, “CAE-CNNLoc: An Edge-based WiFi Fingerprinting Indoor Localization Using Convolutional Neural Network and Convolutional Auto-Encoder”.
[18] E. Pintelas, I. E. Livieris, and P. E. Pintelas, “A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets,” Sensors, vol. 21, no. 22, p. 7731, Nov. 2021, doi: 10.3390/s21227731. DOI: https://doi.org/10.3390/s21227731
[19] “EECS 206 Labs.” Accessed: Oct. 09, 2023. [Online]. Available: https://www.eecs.umich.edu/courses/eecs206/public/la
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.