Application of Computer Vision in T-Shirt Dimensions Measurement

Authors

DOI:

https://doi.org/10.4108/eetinis.v9i31.707

Keywords:

T-Shirt, Auto-dimensioning, computer vision, metrology automation, intelligent system

Abstract

This paper presents a solution to automatically measure the T-shirt dimensions in the garment industry. To address this goal, the paper focuses on utilizing image processing to determine the T-shirt's dimensions. The processing algorithm was provided along with the proposed recognition regions novel approach that was expected to deliver faster processing speed and enhance accuracy. The feasibility was demonstrated by characterizing the accuracy and processing speed. Specifically, five distinctive dimensions were successfully identified and measured; with the replication of 30, the discrepancy varies from 0.095% (for chest) to 2.088% (for collar). The divergence is insignificant compared with the granted tolerances. Finally, the processing time and the mechanical structure of the system deliver productivity of 22 products/minute which is approximately 10 times more rapidly than manual measurement (25 seconds).

Downloads

Download data is not yet available.

References

John Rajan, A., Jayakrishna, K., Vignesh, T., Chandradass, J., Kannan, T.T.M., (2021) Development of computer vision for inspection of bolt using convolutional neural network, Materials Today: Proceedings Volume 46(7), pp. 6931-6935. DOI: 10.1016/j.matpr.2021.01.372 DOI: https://doi.org/10.1016/j.matpr.2021.01.372

Le, N. H., Tu, V. B. N., (2019) A Machine Vision Based Automatic Optical Inspection System for Detecting Defects of Rubber Keypads of Scanning Machine, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, Volume 6(18). DOI: 10.4108/eai.28-3-2019.157121 DOI: https://doi.org/10.4108/eai.28-3-2019.157121

Meng, Y. F., Gong, S. R., Liu, C. P., (2010) A Fast Computer Vision System for Defect Detection of Rubber Keypad, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), pp. V2-155-V2-160. DOI: 10.1109/ICCASM.2010.5620156 DOI: https://doi.org/10.1109/ICCASM.2010.5620156

Wu, S. H. P., Guo, H. Y., (2015) Automatic Optical Inspection for Steel Golf Club, 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). DOI: 10.1109/FSKD.2015.7382317 DOI: https://doi.org/10.1109/FSKD.2015.7382317

Wu, F. B., Zhang, X. M., (2014) An inspection and classification method for chip solder joints using color grads and Boolean rules, Robotics and Computer-Integrated Manufacturing, Volume 30(5), pp. 517–526. DOI: 10.1016/j.rcim.2014.03.003 DOI: https://doi.org/10.1016/j.rcim.2014.03.003

Wu, H., Zhang, X. M., Kuang, Y. C., Ouyang, G. F., Xie, H. W., (2013) Solder joint inspection based on neural network combined with genetic algorithm, Optik, Volume 124(20), pp. 4110–4116. DOI: 10.1016/j.ijleo.2012.12.030 DOI: https://doi.org/10.1016/j.ijleo.2012.12.030

Alexandre, R. M., Marcelo, R. S., (2015) Inspecting surface mounted devices using k nearest neighbor and Multilayer Perceptron, 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE). DOI: 10.1109/ISIE.2015.7281599 DOI: https://doi.org/10.1109/ISIE.2015.7281599

Cai, N., Lin, J. F., Ye, Q., Wang, H., Weng, S. W., Ling, B. W. K. L., (2016) A New IC Solder Joint Inspection Method for an Automatic Optical Inspection System Based on an Improved Visual Background Extraction Algorithm, IEEE Transactions on components, packaging and manufacturing technology, Volume 6(1). DOI: 10.1109/TCPMT.2015.2501284 DOI: https://doi.org/10.1109/TCPMT.2015.2501284

Tang, Y. C., Li, L. J., Wang, C. L., Huang, K. Y., (2019) Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision, Robotics Comput.-Integrated Manuf., Volume 59, pp. 36–46. DOI: 10.1016/j.rcim.2019.03.001 DOI: https://doi.org/10.1016/j.rcim.2019.03.001

Gong, M., Zhang, Z. J., Zeng, D., Peng, T., (2019) Three-dimensional measurement method of four-view stereo vision based on Gaussian process regression, Sensors, Volume 19(20), pp. 4486. DOI: 10.3390/s19204486 DOI: https://doi.org/10.3390/s19204486

Tang, Y. C., Li, L. J., Feng, W. X., Chen M. Y., (2018) Binocular vision measurement and its application in full-field convex deformation of concrete-filled steel tubular columns, Measurement, Volume 130, pp. 372–383. DOI: 10.1016/j.measurement.2018.08.026 DOI: https://doi.org/10.1016/j.measurement.2018.08.026

Huang, H., Liu, J. H., Liu, S. L., Jin, P., Wu, T. Y., Zhang, T., (2020) Error analysis of a stereo-vision-based tube measurement system, Measurement, Volume 157. DOI: 10.1016/j.measurement.2020.107659 DOI: https://doi.org/10.1016/j.measurement.2020.107659

Hsu, H. W., Lo, Y. L., Lee, M. H., (2019) Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED), Additive Manufacturing, Volume 27(6), pp. 372–378. DOI: 10.1016/j.addma.2019.03.017 DOI: https://doi.org/10.1016/j.addma.2019.03.017

Eduardo, S. F. S., William, B. X., Ricardo N. R., Silvia S. C. B., (2017) Vision Based Measurement applied to Industrial Instrumentation, IFAC Papers On Line, Volume 50(1), pp. 788–793. DOI: 10.1016/j.ifacol.2017.08.509 DOI: https://doi.org/10.1016/j.ifacol.2017.08.509

Pagano, S., Russo, R., Savino, S., (2020) A vision guided robotic system for flexible gluing process in the footwear industry, Robotics and Computer Integrated Manufacturing, Volume 65. DOI: 10.1016/j.rcim.2020.101965 DOI: https://doi.org/10.1016/j.rcim.2020.101965

Karunamoorthy, B., Ramprabu, J., (2018) A Novel Method Of real Time Cloth Size Measurement Algorithm Based On Fpga Platform, International Journal of Innovative Technology and Exploring Engineering (IJITEE), Volume 8(2S). ISSN: 2278-3075

Li, S., Gerardo, A. C., Simon, R., Jan, P. S., (2018) Autonomous Clothes Manipulation Using a Hierarchical Vision Architecture, IEEE Access Volume 6, pp. 76646–76662. DOI: 10.1109/ACCESS.2018.2883072 DOI: https://doi.org/10.1109/ACCESS.2018.2883072

Bradski, G. R., Kaehler, A., (2008) Learning OpenCV, O’Reilly Media, Inc. ISBN: 9780596516130

Downloads

Published

29-04-2022

How to Cite

Le, N.-B., Pham, T.-T.-H., Phan, Q.-H., Debnath, N. C., & Le, N.-H. (2022). Application of Computer Vision in T-Shirt Dimensions Measurement. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 9(31), e1. https://doi.org/10.4108/eetinis.v9i31.707