Joint Adaptive Modulation and Power Control Scheme for Energy Efficient FSO-based Non-Terrestrial Networks

Authors

  • Thang V. Nguyen Posts and Telecommunications Institute of Technology image/svg+xml
  • Hien T. T. Pham Posts and Telecommunications Institute of Technology image/svg+xml
  • Ngoc T. Dang Posts and Telecommunications Institute of Technology image/svg+xml

DOI:

https://doi.org/10.4108/eetinis.v12i1.7317

Keywords:

Satellite communications, Free-space optics communications, Cloud attenuation, Atmospheric turbulence, Adaptive modulation, Power control

Abstract

Free-space optics (FSO)-based non-terrestrial networks (NTN) have garnered significant attention as a potential technology for forthcoming 6G wireless communications due to their exceptional data rate and extensive global coverage capability. Nevertheless, atmospheric attenuation, cloud attenuation, geometric loss, and atmospheric turbulence present numerous difficulties in developing these networks. To cope with these difficulties, we propose to apply a joint adaptive modulation and power control (JAMPC) scheme to FSO-based NTN. Our proposed JAMPC algorithm aims to enhance energy efficiency while guaranteeing the targeted outage probability, bit-error rate, and the required data rate. We develop mathematical models and derive closed-form expressions to implement the proposed algorithm and solve the optimization problem. The numerical results confirm that the JAMPC scheme helps NTN provide better energy efficiency and the ability to adapt to various channel conditions.

Downloads

Download data is not yet available.

References

[1] He, B., & Bhatti, U. A. (2024). Smart Cities and Smart Networks: AI Applications in Urban Geography and Industrial Communication. International Journal of High Speed Electronics and Systems, 2440122. DOI: https://doi.org/10.1142/S0129156424401220

[2] Tang, H., Zhang, Z., Zhang, Y., Xu, B., & Bhatti, U. A.(2024, June). Plug-and-Work edge collaborator design for customised manufacturing. In 2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 63-68). IEEE. DOI: https://doi.org/10.1109/YAC63405.2024.10598659

[3] Tang, H., Chen, D., Zhang, Y., Xu, B., Bhatti, U. A., & Yu, M. (2024, June). Bidirectional Interaction Techniques Based on Device Digital Twin Model. In 2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 132-138). IEEE. DOI: https://doi.org/10.1109/YAC63405.2024.10598558

[4] Didi, F., Chaouche, M.S., Amari, M., Guezmir, A., Belhenniche, K. and Chellali, A., 2023. Design and Simulation of Grid-Connected Photovoltaic System’s Performance Analysis with Optimal Control of Maximum Power Point Tracking MPPT Based on Artificial Intelligence. Tobacco Regulatory Science (TRS), pp.1074-1098.

[5] Hai, T., Zain, J.M. and Nakamura, H., 2023. Maximum power point tracking technique based on variable step size with sliding mode controller in photovoltaic system. Soft Computing, 27(7), pp.3829-3845. DOI: https://doi.org/10.1007/s00500-022-07588-6

[6] Azam, M.S., Bhattacharjee, A., Hassan, M., Rahaman, M., Aziz, S., Shaikh, M.A.A. and Islam, M.S., 2024. Performance enhancement of solar PV system introducing semi-continuous tracking algorithm based solar tracker. Energy, 289, p. 129989. DOI: https://doi.org/10.1016/j.energy.2023.129989

[7] Guanghua, L., Siddiqui, F.A., Aman, M.M., Shah, S.H.H., Ali, A., Soomar, A.M. and Shaikh, S., 2024. Improved maximum power point tracking algorithms by using numerical analysis techniques for photovoltaic systems. Results in Engineering, 21, p. 101740. DOI: https://doi.org/10.1016/j.rineng.2023.101740

[8] Ahmed, S., Mekhilef, S., Mubin, M.B. and Tey, K.S., 2022. Performances of the adaptive conventional maximum power point tracking algorithms for solar photovoltaic system. Sustainable Energy Technologies and Assessments, 53, p. 102390. DOI: https://doi.org/10.1016/j.seta.2022.102390

[9] Xu, S., Gao, Y., Zhou, G. and Mao, G., 2020. A global maximum power point tracking algorithm for photovoltaic systems under partially shaded conditions using modified maximum power trapezium method. IEEE Transactions on industrial electronics, 68(1), pp. 370-380. DOI: https://doi.org/10.1109/TIE.2020.2965498

[10] Verma, P., Alam, A., Sarwar, A., Tariq, M., Vahedi, H., Gupta, D., Ahmad, S. and Shah Noor Mohamed, A., 2021. Meta-heuristic optimization techniques used for maximum power point tracking in solar pv system. Electronics, 10(19), p.2419. DOI: https://doi.org/10.3390/electronics10192419

[11] Chou, K.Y., Yang, S.T. and Chen, Y.P., 2019. Maximum power point tracking of photovoltaic system based on reinforcement learning. Sensors, 19(22), p.5054. DOI: https://doi.org/10.3390/s19225054

[12] Rafeeq Ahmed, K., Sayeed, F., Logavani, K., Catherine, T.J., Ralhan, S., Singh, M., Prabu, R.T., Subramanian, B.B. and Kassa, A., 2022. Maximum power point tracking of PV grids using deep learning. International Journal of Photoenergy, 2022(1), p.1123251. DOI: https://doi.org/10.1155/2022/1123251

[13] Zhang, X., Li, S., He, T., Yang, B., Yu, T., Li, H., Jiang, L. and Sun, L., 2019. Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition. Energy, 174, pp.1079-1090. DOI: https://doi.org/10.1016/j.energy.2019.03.053

[14] Patel, A., Swathika, O.G., Subramaniam, U., Babu, T.S., Tripathi, A., Nag, S., Karthick, A. and Muhibbullah, M., 2022. A practical approach for predicting power in a small‐scale off‐grid photovoltaic system using machine learning algorithms. International Journal of Photoenergy, 2022(1), p.9194537. DOI: https://doi.org/10.1155/2022/9194537

[15] Nkambule, M.S., Hasan, A.N., Ali, A., Hong, J. and Geem, Z.W., 2021. Comprehensive evaluation of machine learning MPPT algorithms for a PV system under different weather conditions. Journal of Electrical Engineering & Technology, 16, pp.411-427. DOI: https://doi.org/10.1007/s42835-020-00598-0

[16] Liu, Y., 2022. Short‐Term Prediction Method of Solar Photovoltaic Power Generation Based on Machine Learning in Smart Grid. Mathematical Problems in Engineering, 2022(1), p.8478790. DOI: https://doi.org/10.1155/2022/8478790

[17] Kabilan, R., Chandran, V., Yogapriya, J., Karthick, A., Gandhi, P.P., Mohanavel, V., Rahim, R. and Manoharan, S., 2021. Short‐Term Power Prediction of Building Integrated Photovoltaic (BIPV) System Based on Machine Learning Algorithms. International Journal of Photoenergy, 2021(1), p.5582418. DOI: https://doi.org/10.1155/2021/5582418

[18] Hameed, W.I., Saleh, A.L., Sawadi, B.A., Al-Yasir, Y.I. and Abd-Alhameed, R.A., 2019. Maximum power point tracking for photovoltaic system by using fuzzy neural network. Inventions, 4(3), p.33. DOI: https://doi.org/10.3390/inventions4030033

[19] Mahmud, K., Azam, S., Karim, A., Zobaed, S., Shanmugam, B. and Mathur, D., 2021. Machine learning based PV power generation forecasting in alice springs. IEEE Access, 9, pp.46117-46128. DOI: https://doi.org/10.1109/ACCESS.2021.3066494

[20] Abokhalil, A., 2020. Maximum power point tracking for a PV system using tuned support vector regression by particle swarm optimization. Journal of Engineering Research, 8(4). DOI: https://doi.org/10.36909/jer.v8i4.9113

[21] Padmavathi, N., Chilambuchelvan, A. and Shanker, N.R., 2021. Maximum power point tracking during partial shading effect in PV system using machine learning regression controller. Journal of Electrical Engineering & Technology, 16, pp.737-748. DOI: https://doi.org/10.1007/s42835-020-00621-4

[22] Xie, Z. and Wu, Z., 2021. Maximum power point tracking algorithm of PV system based on irradiance estimation and multi-Kernel extreme learning machine. Sustainable Energy Technologies and Assessments, 44, p.101090. DOI: https://doi.org/10.1016/j.seta.2021.101090

[23] Mahesh, P.V., Meyyappan, S. and Alla, R., 2023. Support Vector Regression Machine Learning based Maximum Power Point Tracking for Solar Photovoltaic systems. International journal of electrical and computer engineering systems, 14(1), pp.100-108. DOI: https://doi.org/10.32985/ijeces.14.1.11

[24] Guo, M., Ren, M., Chen, J., Cheng, L. and Yang, Z., 2023. Tracking Photovoltaic Power Output Schedule of the Energy Storage System Based on Reinforcement Learning. Energies, 16(15), p.5840. DOI: https://doi.org/10.3390/en16155840

[25] Artetxe, E., Uralde, J., Barambones, O., Calvo, I. and Martin, I., 2023. Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin. Mathematics, 11(9), p.2166. DOI: https://doi.org/10.3390/math11092166

[26] Bollipo, R.B., Mikkili, S. and Bonthagorla, P.K., 2023. Application of radial basis neural network in MPPT technique for stand-alone PV system under partial shading conditions. IETE Journal of Research, 69(9), pp.6409-6430. DOI: https://doi.org/10.1080/03772063.2021.1988874

[27] Bristi, S. D., Tatha, M. J., Ali, M. F., Bhatti, U. A., Sarker, S.K., Masud, M., ... & Saha, D. K. (2023). A Meta-Heuristic Sustainable Intelligent Internet of Things Framework for Bearing Fault Diagnosis of Electric Motor under Variable Load Conditions. Sustainability, 15(24), 16722. DOI: https://doi.org/10.3390/su152416722

[28] Ali, A., Li, J., Chen, H., Bhatti, U. A., & Khan, A. (2023). Real-Time Spammers Detection Based on Metadata Features with Machine Learning. Intelligent Automation & Soft Computing, 38(3). DOI: https://doi.org/10.32604/iasc.2023.041645

[29] Cheng, M., Li, D., Zhou, N., Tang, H., Wang, G., Li, S., ... & Khan, M. K. (2023). Vision-motion codesign for low-level trajectory generation in visual servoing systems. IEEE Transactions on Instrumentation and Measurement. DOI: https://doi.org/10.1109/TIM.2023.3326234

[30] Chen, H., Zhang, Y., Bhatti, U. A., & Huang, M. (2023). Safe decision controller for autonomous drivingbased on deep reinforcement learning innondeterministic environment. Sensors, 23(3), 1198. DOI: https://doi.org/10.3390/s23031198

[31] Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables (New York, USA: Dover), 9th ed.

Downloads

Published

03-12-2024

How to Cite

Nguyen, T. V., Pham, H. T. T., & Dang, N. T. (2024). Joint Adaptive Modulation and Power Control Scheme for Energy Efficient FSO-based Non-Terrestrial Networks. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 12(1). https://doi.org/10.4108/eetinis.v12i1.7317