Integrated Cloud-Twin Synchronization for Supply Chain 5.0

Authors

DOI:

https://doi.org/10.4108/eetinis.v12i2.8600

Keywords:

Integrated Cloud-Twin Synchronization, ICTS, Digital twin, cloud computing, industry 5.0, supply chain 5.0, optimization, genetic algorithm

Abstract

The digital twin is thus emerging means of improving real-world performance from virtual spaces, especially relatedto Supply Chain 5.0 in Industry 5.0. This framework employs the integration of cloud computing and digital twin technologies to secure data storage, trusted tracking, and high reliability, is architectural for the integration of supply-chain sustainable enterprises. In this work, we introduce a high level architecture of cloud-based digital twin model for supply chain 5.0 , which was created to align the system of supply chain through real-time observation as well as real-timesupply chain 5.0 decision-making and control. This study introduces a cloud-based twin optimization model for Supply Chain 5.0, validated through genetic algorithm (GA) simulations. The model determines optimal weights to balance objectives, achieving an optimal objective function value that reflects trade-offs among operational efficiency, cost, and sustainability. A convergence plot illustrates the model’s iterative solution improvements, demonstrating its dynamic adaptability. Lastly, the proposed model defines and test a supply chain performance analysis through dynamic simulations.

Downloads

References

[1] Agrawal S., Agrawal R., Kumar A., Luthra S., and Garza-Reyes J. A. (2024) Can industry 5.0 tech nologies overcome supply chain disruptions?—a perspec tive study on pandemics, war, and climate change issues, Operations Management Research, 17(2), 453–468. doi:10.1007/s12063-023-00410-y DOI: https://doi.org/10.1007/s12063-023-00410-y

[2] Zhang G., MacCarthy B. L., and Ivanov D. (2022) The cloud, platforms, and digital twins—Enablers of the digital supply chain, in The digital supply chain (Elsevier), pp. 77 91. doi:10.1016/B978-0-323-91614-1.00005-8 DOI: https://doi.org/10.1016/B978-0-323-91614-1.00005-8

[3] Gai, K., Zhang, Y., Qiu, M., & Thuraisingham, B. (2022) Blockchain-enabled service optimizations in supply chain digital twin, IEEE Transactions on Services Computing, 16(3), 1673–1685. doi:10.1109/TSC.2022.3192166 DOI: https://doi.org/10.1109/TSC.2022.3192166

[4] Xu M., Ng W. C., Lim W. Y. B., Kang J., Xiong Z., Niyato D., ... & Miao C. (2022) A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges, IEEE Communications Surveys & Tutorials, 25(1), 656–700. doi:10.1109/COMST.2022.3221119 DOI: https://doi.org/10.1109/COMST.2022.3221119

[5] Hsu C. H., Wu J. Z., Zhang T. Y., & Chen J. Y. (2024) Deploying Industry 5.0 drivers to enhance sustainable supply chain risk resilience, International Journal of Sustainable Engineering, 17(1), 1–28. doi:10.1080/19397038.2024.2327381 DOI: https://doi.org/10.1080/19397038.2024.2327381

[6] Botín-Sanabria D. M., Mihaita A.S., Peimbert-García R.E., Ramírez-MorenoM.A.,Ramírez-MendozaR.A.,& Lozoya-Santos J.D.J. (2022) Digital twin technology chal lenges and applications: A comprehensive review,Remote Sensing, 14(6), 1335. doi:10.3390/rs14061335 DOI: https://doi.org/10.3390/rs14061335

[7] Tallat, R., Hawbani, A., Wang, X., Al-Dubai, A., Zhao, L., Liu, Z., ... & Alsamhi, S. H.(2023). Navigating Industry 5.0: A survey of key enabling technologies, trends, chal lenges, and opportunities. IEEE Communications Surveys & Tutorials. doi:10.1109/COMST.2023.3329472 DOI: https://doi.org/10.1109/COMST.2023.3329472

[8] Omrany, H., Al-Obaidi, K. M., Husain, A., & Ghaffar ianhoseini, A. (2023) Digital twins in the construction industry: A comprehensive review of current implementa tions, enabling technologies, and future directions, Sustain ability, 15(14), 10908. doi:10.3390/su151410908 DOI: https://doi.org/10.3390/su151410908

[9] Obrador Rey, S., Canals Casals, L., Gevorkov, L., Cre mades Oliver, L., & Trilla, L. (2024) Critical Review on the Sustainability of Electric Vehicles: Addressing Chal lenges without Interfering in Market Trends, Electronics, 13(5), 860. doi:10.3390/electronics13050860 DOI: https://doi.org/10.3390/electronics13050860

[10] Mihai, S., Yaqoob, M., Hung, D.V., Davis, W., Towakel, P., Raza, M. & Nguyen, H. X. (2022) Digital twins: A sur vey on enabling technologies, challenges, trends and future prospects, IEEE Communications Surveys & Tutorials, 24(4), 2255-2291. doi:10.1109/COMST.2022.3208773 DOI: https://doi.org/10.1109/COMST.2022.3208773

[11] Latha, D.S., & Samanchuen, T. (2023) Revolutioniz ing Pharmaceutical Cold Chain Competency Framework with Reference Process Model and Reference Architec ture, HighTech and Innovation Journal, 4(2), 387-401. doi:10.28991/HIJ-2023-04-02-011 DOI: https://doi.org/10.28991/HIJ-2023-04-02-011

[12] Attaran, M., & Celik, B.G. (2023) Digital Twin: Benefits, use cases, challenges, and opportunities, Decision Analytics Journal, 6, 100165. doi:10.1016/j.dajour.2023.100165 DOI: https://doi.org/10.1016/j.dajour.2023.100165

[13] Sani, S., Zarifnia, A., Salonitis, K.,& Milisavljevic Syed, J. (2024) Supply Chain 4.0 and the Digi tal Twin Approach: A Framework for Improving Sup ply Chain Visibility, Procedia CIRP, 128, 321–326. doi:10.1016/j.procir.2024.03.014 DOI: https://doi.org/10.1016/j.procir.2024.03.014

[14] Xuan, D.T., Huynh, T.V., Hung, N.T.,& Thang, V.T. (2023) Applying Digital Twin and Multi-Adaptive Genetic Algorithms in Human–Robot Cooperative Assembly Optimization, Applied Sciences, 13(7),4229. doi:10.3390/app13074229 DOI: https://doi.org/10.3390/app13074229

[15] Zhang, Z., Qu, T., Zhao, K., Zhang, K., Zhang, Y., Liu, L., & Huang, G. Q. (2023) Optimization Model and Strategy for Dynamic Material Distribution Scheduling Based on Digital Twin, Preprints, 202311.0071. doi:10.20944/preprints202311.0071.v1

[16] Karkaria, V.,Tsai, Y.K., Chen, Y.P.,& Chen, W. (2024) An optimization-centric review on integrating artificial intelligence and digital twin technologies in manufacturing, Engineering Optimization, 1-47. doi:10.1080/0305215X.2024.2434201 DOI: https://doi.org/10.1080/0305215X.2024.2434201

[17] Park, K.T., Son, Y.H., & Noh, S.D. (2021) The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control, International Journal of Production Research, 59(19), 5721–5742. doi:10.1080/00207543.2020.1788738 DOI: https://doi.org/10.1080/00207543.2020.1788738

[18] Javaid, M., Haleem, A., & Suman, R. (2023) Digital twin applications toward industry 4.0: A review, Cognitive Robotics, 3, 71–92. doi:10.1016/j.cogr.2023.04.003 DOI: https://doi.org/10.1016/j.cogr.2023.04.003

[19] Brkovic, M., Culibrk, J., & Rikalovic, A. (2023) Industry 5.0 and the Skills Gap: Strategies for Developing a Future Ready Workforce. doi:10.24867/IS-2023-T6.2-2_04941 DOI: https://doi.org/10.24867/IS-2023-T6.2-2_04941

[20] Latha, D.S., & Samanchuen, T. (2023) Development of Reference Process Model and Reference Architecture for Pharmaceutical Cold Chain, Sustainability, 15(5), 3935. doi:10.3390/su15053935 DOI: https://doi.org/10.3390/su15053935

[21] Guo, D., & Mantravadi, S. (2024) The role of digital twins in lean supply chain management: review and research directions, International Journal of Production Research, 1 22. doi:10.1080/00207543.2024.2372655 DOI: https://doi.org/10.1080/00207543.2024.2372655

[22] Vitazkova, D., Foltan, E., Kosnacova, H., Micjan, M., Donoval, M., Kuzma, A., ... & Vavrinsky, E. (2024) Advances in respiratory monitoring: a comprehensive review of wearable and remote technologies, Biosensors, 14(2), 90. doi:10.3390/bios14020090 DOI: https://doi.org/10.3390/bios14020090

[23] Rane, N., Choudhary, S., & Rane, J. (2024) Artificial intelligence and machine learning for resilient and sustain able logistics and supply chain management, Available at SSRN, 4847087. doi:10.70593/978-81-981367-4-9_5 DOI: https://doi.org/10.2139/ssrn.4847087

[24] Agarwal, N. (2024) Shift to customer-centricity, its challenges and the future of smart supply chains, Journal of Supply Chain Management, Logistics and Procurement, 6(3), 198–212. doi:10.69554/HRNR2496 DOI: https://doi.org/10.69554/HRNR2496

[25] Pratap, S., Jauhar, S.K., Gunasekaran, A., & Kam ble, S.S. (2024) Optimizing the IoT and big data embedded smart supply chains for sustainable perfor mance, Computers & Industrial Engineering, 187, 109828. doi:10.1016/j.cie.2023.109828 DOI: https://doi.org/10.1016/j.cie.2023.109828

[26] Ismail, M.M., Ahmed, Z., Abdel-Gawad, A. F., & Mohamed, M. (2024) Toward Supply Chain 5.0: An Integrated Multi-Criteria Decision-Making Models for Sustainable and Resilience Enterprise, Decision Making: Applications in Management and Engineering, 7(1), 160 186. doi:10.31181/dmame712024955 DOI: https://doi.org/10.31181/dmame712024955

[27] Altiparmak, F., Gen, M., Lin,L., & Paksoy, T. (2006) A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineer ing, 51(1), 196–215. doi:10.1016/j.cie.2006.07.011 DOI: https://doi.org/10.1016/j.cie.2006.07.011

[28] Xanthopoulos, A., & Kostavelis, I. (2024) Novel Simulation Optimization Approach for Supply Chain Coordination and Management,ProcediaComputerScience, 232, 1646–1653. doi:10.1016/j.procs.2024.01.162 DOI: https://doi.org/10.1016/j.procs.2024.01.162

[29] Ivanov, D. (2023) The Industry 5.0 framework: viability based integration of the resilience, sustainability, and human-centricity perspectives, International Journal of Production Research, 61(5), 1683–1695. doi:10.1080/00207543.2022.2118892 DOI: https://doi.org/10.1080/00207543.2022.2118892

[30] Soleimani, H., & Kannan, G. (2015) A hybrid particle swarm optimization and genetic algorithm for closed loop supply chain network design in large-scale networks, Applied Mathematical Modelling, 39(14), 3990–4012. doi:10.1016/j.apm.2014.12.016 DOI: https://doi.org/10.1016/j.apm.2014.12.016

[31] Maheshwari, P., Kamble, S., Belhadi, A., Venkatesh, M., & Abedin, M. Z. (2023) Digital twin-driven real-time planning, monitoring, and controlling in food supply chains, Technological Forecasting and Social Change, 195, 122799. doi:10.1016/j.techfore.2023.122799 DOI: https://doi.org/10.1016/j.techfore.2023.122799

[32] Chen, Z., Zou, J., & Wang, W. (2024) Digital twin oriented dynamic optimization of multi-process route based on improved hybrid ant colony algorithm, Bulletin of the Polish Academy of Sciences Technical Sciences, e148875 e148875. doi:10.24425/bpasts.2024.148875 DOI: https://doi.org/10.24425/bpasts.2024.148875

[33] Zhang, Z., Qu, T., Zhao, K., Zhang, K., Zhang, Y., Liu, L., & Huang, G. Q. (2023) Optimization Model and Strategy for Dynamic Material Distribution Scheduling Based on Digital Twin, Preprints, 202311.0071. Available at: https://www.preprints.org/manuscript/202311. 0071 DOI: https://doi.org/10.20944/preprints202311.0071.v1

[34] Krajčovič, M., Hančinský, V., Dulina, Ľ., Grznár, P., Gašo, M., & Vaculík, J. (2019) Parameter setting for a genetic algorithm layout planner as a tool of sustainable manufacturing, Sustainability, 11(7), 2083. doi:10.3390/su11072083 EAI Endorsed Transactions DOI: https://doi.org/10.3390/su11072083

Downloads

Published

12-03-2025

How to Cite

Sasi Latha, D., & Mokkhamakkul, T. (2025). Integrated Cloud-Twin Synchronization for Supply Chain 5.0. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 12(2). https://doi.org/10.4108/eetinis.v12i2.8600