Return Loss Optimization in Rectangular Microstrip Patch Antennas Using Response Surface Methodology (RSM) for 5G Applications

Authors

  • Thi Bich Ngoc Tran Vietnam Aviation Academy
  • Van Su Dang Ho Chi Minh City University of Industry and Trade image/svg+xml

DOI:

https://doi.org/10.4108/eetinis.v12i3.8948

Keywords:

5G, Central Composite Design, CCD, patch antenna, return loss, Response Surface Methodology, RSM

Abstract

In recent decades, wireless communication has advanced significantly. People increasingly rely on the Internet of Things, cloud computing, and big data analytics. These services require higher data rates, faster transmission and reception times, greater coverage, and increased throughput. 5G technology supports all of these features. Antennas, essential components of modern wireless devices, must be designed to meet the growing demand for fast and intelligent products. This study aims to optimize the dimensions and characteristics of a rectangular patch antenna. To examine the impact of independent variables (such as patch length, patch width, inset slot length, and inset slot width) on the response variables (return loss and resonant frequency), Response Surface Methodology (RSM) combined with Central Composite Design (CCD) was applied. The findings of the RSM analysis indicated that the experimental data were best represented by a quadratic polynomial model, with regression coefficients exceeding 0.970 for all responses. The optimized parameters identified are as follows: a patch length of 4.7 mm, a patch width of 4.7 mm, an inset slot length of 0.8 mm, and an inset slot width of 1.0 mm. The antenna designed using these optimized parameters achieved a target return loss of -45.865 dB at a frequency of 28.122 GHz. Finally, the results were validated using CST Studio Suite, which demonstrated good agreement with the experimental data.

Downloads

References

[1] Tun H.M., Lin Z.T.T., Pradhan D. and Sahu P.K. (2021). Slotted design of rectangular single/dual feed planar microstrip patch antenna for SISO and MIMO system. In Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). 09-10 December 2021; South Africa; IEEE; pp. 1–6. doi: 10.1109/ICECET52533.2021.9698738

[2] Lavadiya S.P., Sorathiya V., Kanzariya S., Chavda B., Naweed A., Faragallah O.S., Eid M.M. and Rashed A.N.Z. (2022). Low profile multiband microstrip patch antenna with frequency reconfigurable feature using pin diode for S, C, X, and Ku band applications. International journal of communication systems. 35(9): e5141. doi: 10.1002/dac.5141

[3] Chang L. and Liu H (2021). Low-profile and miniaturized dual-band microstrip patch antenna for 5G mobile terminals. IEEE Transactions on Antennas and Propagation. 70(3), pp. 2328–2333. doi: 10.1109/TAP.2021.3118730

[4] Balanis C.A. (2016). Antenna Theory: Analysis and Design. 4th Edition John Wiley & sons.

[5] Koziel S. and Ogurtsov S. (2013). Multi-objective design of antennas using variable fidelity simulations and surrogate models. IEEE Transactions on Antennas and Propagation. 61(12): pp. 5931–5939. doi: 10.1109/TAP.2013.2283599

[6] Kuwahara Y. (2005). Multiobjective optimization design of Yagi-Uda antenna. IEEE Transactions on Antennas and Propagation. 53(6): pp. 1984–1992. doi: 10.1109/TAP.2005.848501

[7] Elias B.B.Q., Soh P.J., Al-Hadi A.A. and Akkaraekthalin P. (2021). Gain optimization of low-profile textile antennas using CMA and active mode subtraction method. IEEE Access. 9: pp. 23691–23704. doi: 10.1109/ACCESS.2021.3056905

[8] Koziel S. and Bekasiewicz A. (2018). Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size determination. Engineering Optimization. 50(2): pp. 218–234. doi: 10.1080/0305215X.2017.1311879

[9] Ayalew L.G. and Asmare F.M. (2022). Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications. Heliyon. 8(12): e12030.

[10] Bekasiewicz A. and Koziel S. (2015). Structure and computationally efficient simulation-driven design of compact UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters. 14, pp. 1282-1285. doi: 10.1109/LAWP.2015.2402282

[11] Han M., Liu Y., Rakhmanov R., Israel C., Tajin M. A. S., Friedman G. at el and Gogotsi Y. (2021). Solution processed T i3C2Tx MXene antennas for radio-frequency communication. Advanced Materials. 33(1), 2003225. doi: 10.1002/adma.202003225

[12] Fernandez M.D., Herraiz D., Herraiz D., Alomainy A. and Belenguer A. (2022). Design of a wide-bandwidth, high-gain and easy-to-manufacture 2.4 GHz floating patch antenna fed with the throughwire technique. Applied Sciences. 12(24): p. 12925. doi: 10.3390/app122412925

[13] Mohamed M. Y., Dini A. M., Soliman M. M. and Imran A. Z. M. (2020). Design of 2x2 microstrip patch antenna array at 28 GHz for millimeter wave communication. In Proceedings of 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) 02-05 February 2020; Qatar; IEEE; pp. 445-450. doi: 10.1109/ICIoT48696.2020.9089458

[14] Gubran M. Qubati and Dib N. I. (2010). Microstrip patch antenna optimization using modified central force optimization. Progress In Electromagnetics Research B. 21(21): pp. 281–298. doi: 10.2528/PIERB10050511

[15] Douglas C. Montgomery. (2019). Design and Analysis of Experiments John Wiley & sons 10th Edition.

[16] Chen J.H., Cheng C.Y., Chien C.M., Yuangyai C., Chen T.H. and Chen S.T. (2023). Multiple performance optimizations for microstrip patch antenna improvement. Sensors. 23(9): p. 4278. doi: 10.3390/s23094278

[17] Akhtar F., Saleem M.M., Zubair M. and Ahmad M. (2023). Design optimization of RF-MEMS based multiband reconfigurable antenna using response surface methodology. In Proceedings of 2018 Progress in Electromagnetics Research Symposium (PIERSToyama). 01-04 August 2018; IEEE. pp. 743–750. doi: 10.23919/PIERS.2018.8598186

[18] Jose J., Paulson A.S.R. and Jose M.J. (2020). Predicting performance characteristics of double elliptical microstrip patch antenna for radiolocation applications using response surface methodology. Progress In Electromagnetics Research B. 88: pp. 35–52. doi: 10.2528/PIERB20051504

[19] Akdagli A. (2007). A closed-form expression for the resonant frequency of rectangular microstrip antennas. Microwave and Optical Technology Letters. 49(8): pp. 1848–1852. doi: 10.1002/mop.22572

[20] Oskui F.N., Aghdasinia H. and Sorkhabi M.G. (2019). Modeling and optimization of chromium adsorption onto clay using response surface methodology, artificial neural network, and equilibrium isotherm models. Environmental Progress & Sustainable Energy. 38(6): p. 13260. doi: 10.1002/ep.13260

[21] Margaret D.H. and Manimegalai B. (2018). Modeling and optimization of ebg structure using response surface methodology for antenna applications. AEU-International Journal of Electronics and Communications. 89, pp. 34–41. doi: 10.1016/j.aeue.2018.03.017

[22] Darboe O., Konditi D.B.O. and Manene F. (2019). A 28 GHz rectangular microstrip patch antenna for 5G applications. International Journal of Engineering Research and Technology. 12(6): pp. 854–857.

[23] Jiddney M.A., Mahmud M.Z., Rahman M., Paul L.C. and Islam M.T. (2020). A circular shaped microstrip line fed miniaturized patch antenna for 5G applications. In Proceedings of the 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI). 19-20 December 2020; Bangladesh; IEEE. pp. 1–4. doi: 10.1109/STI50764.2020.9350513

[24] Merlin Teresa P. and Umamaheswari G. (2020). Compact slotted microstrip antenna for 5G applications operating at 28 GHz. IETE Journal of Research. 68(5): 3778–3785. doi: 10.1080/03772063.2020.1779620

[25] Didi S. E., Halkhams I., Fattah M., Balboul Y., Mazer S. and Bekkali M. E. (2021). Design of a microstrip antenna two-slot for fifth generation applications operating at 27.5 GHz. In International Conference on Digital Technologies and Applications. Cham: Springer International Publishing. pp. 1081-1089 doi: 10.1007/978-3-030-73882-2

[26] Didi S.-E., Halkhams I., Fattah M., Balboul Y., Mazer S. and El Bekkali M. (2022). Design of a microstrip antenna patch with a rectangular slot for 5G applications operating at 28 GHz. TELKOMNIKA (Telecommunication Computing Electronics and Control). 20(3): pp. 527–536. doi: 10.12928/telkomnika.v20i3.23159

[27] Alsudani A. and Marhoon H.M. (2022). Performance enhancement of microstrip patch antenna based on frequency selective surface substrate for 5G communication applications. Journal of Communications. 17 (10): pp. 851–856. doi: 10.12720/jcm.17.10.851-856

[28] Alsudani A. and Marhoon H.M. (2023). Design and enhancement of microstrip patch antenna utilizing mushroom-like-EBG for 5G communications. Journal of Communications. 18(3): pp. 156–163 doi: 10.12720/jcm.18.3.156-163

[29] Ayoob S. A., Alsharbaty F. S. and Hammodat A. N. (2023). Design and simulation of high efficiency rectangular microstrip patch antenna using artificial intelligence for 6G era. TELKOMNIKA (Telecommunication Computing Electronics and Control) 21(6), pp. 1234-1245. doi: 10.12928/TELKOMNIKA.v21i6.25389

[30] Rana M. S., Moniruzzaman M., Biswas A. N., Azad T., Mondal S., Islam A. T. U. and Shuva S. K. S. (2023). Design of 28 GHz Microstrip Patch Antenna for Wireless Applications. Indonesian Journal of Electrical Engineering and Informatics (IJEEI). 11(4), pp. 967-977. doi: 10.52549/ijeei.v11i4.4942

[31] Bhadravathi Ghouse P. S., Mane P. R., Ali T., Golapuram Dattathreya G. S., Puthenveettil Gopi S., Pathan S. and Anguera J. (2024). A Low-Profile Circularly Polarized Millimeter-Wave Broadband Antenna Analyzed with a Link Budget for IoT Applications in an Indoor Scenario. Sensors. 24(5), 1569. doi: 10.3390/s24051569

[32] Benkhadda K., ALtalqi F., Bendali A., Haddad A., Zarrik S., Habibi S., Sahel Z., Habibi M. and Hadjoudja A. (2025). 1×2 microstrip patch antennas array for mm-waves 5G application. TELKOMNIKA (Telecommunication Computing Electronics and Control. 23(1), pp. 40-47. doi: 10.12928/TELKOMNIKA.v23i1.26263

[33] Elsharkawy R. R., Hussein K. F. and Farahat A. E. (2025). Circularly-polarized 28-GHz antenna for next generations of communication systems. Scientific Reports. 15(1), 5745. doi: 10.1038/s41598-025-86236-z

Downloads

Published

12-06-2025

How to Cite

Tran, T. B. N., & Dang, V. S. (2025). Return Loss Optimization in Rectangular Microstrip Patch Antennas Using Response Surface Methodology (RSM) for 5G Applications. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 12(3). https://doi.org/10.4108/eetinis.v12i3.8948